Discovery has implications for heart disease

May 01, 2008

A study, led by University of Iowa researchers, reveals a new dimension for a key heart enzyme and sheds light on an important biological pathway involved in cell death in heart disease. The study, published in the May 2 issue of Cell, has implications for understanding, and potentially for diagnosing and treating, heart failure and arrhythmias.

The UI researchers and colleagues from Vanderbilt University in Nashville, Tenn., focused on calmodulin kinase II, or CaM kinase II, a well-studied enzyme critical to many fundamental processes including heartbeat and thought.

Scientists know that CaM kinase's activity is sustained by adding a phosphate group -- a process known as phosphorylation. The new study proves that oxidation -- adding oxygen -- also can sustain the enzyme's activity, and like phosphorylation, the mechanism can be reversed to inactivate the kinase.

"Our results suggest that oxidation of CaM kinase is a dynamic and reversible process that may direct cell signaling in health and disease," said Mark Anderson, M.D., Ph.D., UI professor of internal medicine and molecular physiology and biophysics and senior study author. "Because CaM kinase activity is involved in arrhythmias, hypertrophy and heart cell death, this work also provides new insights into a disease pathway in heart that may lead to development of new drugs to treat heart disease."

In patients with heart failure, the level of angiotensin II -- a signaling molecule that promotes oxidation and cell death -- is elevated. Using a specially created antibody, the researchers found that angiotensin II also increases the amount of oxidized CaM kinase.

In addition, by replacing the cell's normal CaM kinase with a CaM kinase unable to be oxidized, the scientists were able to block angiotensin-induced cell death. Scientists hope this discovery might lead to therapies that prevent cell death by blocking CaM kinase oxidation.

Currently, "angiotensin-blockers" are a mainstay for treating patients with sick hearts, but they work indirectly by targeting receptors on the cell surface. Anderson, who also is the Potter-Lambert Chair in Cardiology and director of the UI Division of Cardiovascular Medicine, suggested that by understanding the signaling mechanisms that occur inside the cell, it might be possible to inhibit the angiotensin pathway more directly. This approach may also preserve some of the good effects mediated by the cell surface receptor.

Using a wide range of scientific techniques and experimental methods, the team, led by Anderson and Jeffrey Erickson, Ph.D., a UI postdoctoral fellow, pinned down the details of the internal signaling mechanism.

Specifically, they showed that oxidation of two neighboring methionines -- sulfur-containing amino acids -- can sustain CaM kinase activity. Loss of these two methionines prevents activation by oxidation. They also found that they could return CaM kinase to its inactive state and inhibit heart cell death and dysfunction by using an enzyme called methionine sulfoxide reductase A (msrA), which reverses the methionine oxidation. Studies in worms, fruit flies and mice have shown that msrA increases lifespan, but, until now, the enzyme's targets in heart were unknown.

The UI team compared mice without the msrA enzyme to normal mice when the animals underwent disease stresses, including excess angiotensin or induced heart attacks. The mice without msrA were more likely to die than normal mice under these circumstances, and the levels of oxidized CaM kinase were much higher in mice that lacked the enzyme.

Anderson speculated that the findings could implicate msrA as a susceptibility gene for patients - potentially, variations in the gene might help explain why some people do so badly after a heart attack where others do well.

The study demonstrates a direct link between CaM kinase activation and oxidative stress, two processes that are implicated in a wide variety of physiological and disease states. These findings will likely have broad implications and applications in basic research, diagnostics and new therapeutic approaches and represent an example of translation science of the type supported and encouraged by the new Institute for Clinical and Translational Science at the UI.

"This study also is a great example of collaborative science," added Anderson. "We had to apply expertise from several different labs to tackle this problem. So, the ease with which we can collaborate across disciplines at the UI and between institutions was enormously beneficial."
The work involved researchers from the UI Roy J. and Lucille A. Carver College of Medicine's Departments of Internal Medicine, Radiation Oncology and Biochemistry; and Vanderbilt University.

In addition to Anderson and Erickson, the UI researchers included Peter Mohler, Ph.D., assistant professor of internal medicine; Douglas Spitz, Ph.D., professor of radiation oncology in the Free Radical and Radiation Biology Graduate Program; Robert Weiss, M.D., professor of internal medicine; Madeline Shea, Ph.D., professor of biochemistry; Mei-ling Joiner, Xiaoqun Guan, Ph.D.; William Kutschke; Jinying Yang; John Lowe; Susan O'Donnell; Nukhet Aykin-Burns, Ph.D.; Matthew Zimmerman, Ph.D.; and Kathy Zimmerman.

The researchers from Vanderbilt University included, Carmine Oddis, M.D.; Ryan Bartlett, Ph.D.; Amy-Joan Ham, Ph.D.; and Roger Colbran, Ph.D.

The study was funded in part by the National Institutes of Health, the Pew Charitable Trust and the UI Research Foundation.

STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

MEDIA CONTACTS: Mark Anderson,; Jennifer Brown, 319-335-9917,

University of Iowa

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to