First luminescent molecular system with a lower critical solution temperature

May 01, 2017

Osaka - Depending on their solubility, solids can completely dissolve in liquids to form clear solutions, or form suspensions that still contain undissolved solid. Solutions of polymers often have a lower critical solution temperature; only below this temperature is the polymer completely soluble at all concentrations.

However, it is rare for non-polymeric mixtures to have a lower critical solution temperature because small molecules usually become more soluble as they are heated.

Osaka University researchers have now created a mixture of small organic and inorganic molecules that has a lower critical solution temperature. Their luminescent mixture is easily switched from a solution to a suspension and back again, simply by changing the temperature. The system, which has a different emission color depending on whether it is in the solution or suspension state, will be useful for the development of new thermo-responsive materials that change color when heated. The study was recently published in the journal Advanced Materials.

"This behavior is usually only observed in polymer systems," says Associate Professor Akinori Saeki, corresponding author of the study, "because they undergo structural changes at high temperatures that reduce their solubility. This is the first example of a luminescent molecule/ion-based lower critical solution temperature system."

The researchers based their system on methyl ammonium lead bromide nanoparticles, which have been used to develop new-generation LEDs and lasers. Noting that these nanoparticles are reversibly broken apart into their molecular components in the presence of certain amines, the researchers prepared a mixture of the nanoparticles with methylamine and other organic molecules.

At room temperature, the mixture was a clear solution that emitted blue light when it was irradiated under UV light. When the researchers heated this clear solution, however, it became white and cloudy, and then formed a yellow suspension above a critical temperature. The yellow suspension emitted green light when irradiated with UV light.

"Using X-ray diffraction, we found that the clear solution contained soluble 1D wires made up of lead bromide, methylamine and oleic acid," Dr Saeki says. "As the solution was heated, these wires rearranged into a co-crystal containing lead bromide and methylamine, which was insoluble in the solvent."

The intermediate co-crystal was an essential step before formation of the yellow nanoparticles at higher temperatures, and its assembly and fragmentation were mediated by the organic molecules oleic acid and methylamine.

Tuning the system by varying the concentrations of the organic molecules or adjusting the ratio of halide ions (chloride, bromide and iodide) in the nanoparticles, the researchers have developed a series of multicolored systems with the same luminescent behavior, and hope to use them in new-generation photomaterials.
-end-


Osaka University

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.