Nav: Home

The science behind making the perfect pitch

May 01, 2017

Baseball legend Satchel Paige, one of the greatest pitcher in the history of the sport, had a simple philosophy when it came to pitching: Keep the ball away from the bat.

But as anyone who has thrown anything knows, it's not that easy. Throwing is one of the most complex actions humans perform. Even tossing a crumpled piece of paper into a wastebasket two feet away requires a series of complex neurological and mechanical calculations. Should you toss overhand or underhand? How fast should you throw? At what angle should you hold your arm?

Applied mathematicians at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) decided to use mathematical models to figure out the best strategies to throw something at a target.

"There are many different ways to get an object to a target," said L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, Physics, and Organismic and Evolutionary Biology at SEAS and senior author of the study. "How do you choose? Our hypothesis was that you choose based on a strategy that minimizes the error at the target while giving yourself the greatest room for error at the release."

The team found that while underhand throws are best for reaching a target close by and above the shoulder, overhand throws are more accurate for targets below the shoulder -- like a wastepaper basket -- and are more forgiving to errors over long distances.

The research is published in Royal Society Open Science.

As all pitchers, quarterbacks and bowlers know, once an object is released, the thrower loses control over where it goes. Mahadevan and M. Venkadesan, of Yale University, analyzed the parabolic trajectories of thrown objects to understand how release errors affect the accuracy of the throw.

"We asked, how do errors introduced in the release of the thrown object propagate at the location of the target, as a function of the distance, orientation and height of the target," said Mahadevan, who is also a core faculty member of the Wyss Institute of Biologically Inspired Engineering at Harvard University.

The researchers also modeled the tradeoff between speed and accuracy when throwing an object.

The team found that regardless of the target location, the most accurate throw is slightly faster than the minimum speed needed to reach the target. The faster the throw, the less likely it is to be accurate, which explains why even the best pitchers still throw a lot of balls. The researchers found that at both high speeds and longer distances, the overarm throw beats the underhand throw in accuracy.

The findings shed light on how humans evolved to throw, said Mahadevan. After all, the ability to hit a target with a thrown object was key to human evolution. Without claws or sharp teeth, humans' ability to throw a stone or spear was a primary method of hunting for food.

"This research demonstrates the theoretically best way to throw. But most of us are not born throwers of anything. We learn how to throw through trial and error," said Mahadevan. "Now, we have a mathematical framework to think about how learning about the physical world requires interacting with the world. We can't think about tasks unless we think about the way in which we interact with the physicality of the environment."
-end-


Harvard John A. Paulson School of Engineering and Applied Sciences

Related Research Articles:

More Research News and Research Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.