Nav: Home

'Valleytronics' advancement could help extend Moore's Law

May 01, 2017

BUFFALO, N.Y. -- In the world of semiconductor physics, the goal is to devise more efficient and microscopic ways to control and keep track of 0 and 1, the binary codes that all information storage and logic functions in computers are based on.

A new field of physics seeking such advancements is called valleytronics, which exploits the electron's "valley degree of freedom" for data storage and logic applications. Simply put, valleys are maxima and minima of electron energies in a crystalline solid. A method to control electrons in different valleys could yield new, super-efficient computer chips.

A University at Buffalo team, led by Hao Zeng, PhD, professor in the Department of Physics, worked with scientists around the world to discover a new way to split the energy levels between the valleys in a two-dimensional semiconductor.

The work is described in a study published online today (May 1, 2017) in the journal Nature Nanotechnology.

The key to Zeng's discovery is the use of a ferromagnetic compound to pull the valleys apart and keep them at different energy levels. This leads to an increase in the separation of valley energies by a factor of 10 more than the one obtained by applying an external magnetic field.

"Normally there are two valleys in these atomically thin semiconductors with exactly the same energy. These are called 'degenerate energy levels' in quantum mechanics terms. This limits our ability to control individual valleys. An external magnetic field can be used to break this degeneracy. However, the splitting is so small that you would have to go to the National High Magnetic Field Laboratories to measure a sizable energy difference. Our new approach makes the valleys more accessible and easier to control, and this could allow valleys to be useful for future information storage and processing," Zeng said.

The simplest way to understand how valleys could be used in processing data may be to think of two valleys side by side. When one valley is occupied by electrons, the switch is "on." When the other valley is occupied, the switch is "off." Zeng's work shows that the valleys can be positioned in such a way that a device can be turned "on" and "off," with a tiny amount of electricity.

Microscopic ingredients

Zeng and his colleagues created a two-layered heterostructure, with a 10 nanometer thick film of magnetic EuS (europium sulfide) on the bottom and a single layer (less than 1 nanometer) of the transition metal dichalcogenide WSe2 (tungsten diselenide) on top. The magnetic field of the bottom layer forced the energy separation of the valleys in the WSe2.

Previous attempts to separate the valleys involved the application of very large magnetic fields from outside. Zeng's experiment is believed to be the first time a ferromagnetic material has been used in conjunction with an atomically thin semiconductor material to split its valley energy levels.

"As long as we have the magnetic material there, the valleys will stay apart," he said. "This makes it valuable for nonvolatile memory applications."

Athos Petrou, a UB Distinguished Professor in the Department of Physics, measured the energy difference between the separated valleys by bouncing light off the material and measuring the energy of reflected light.

"We typically get this type of results only once every five or 10 years," Petrou said.

Extending Moore's law

The experiment was conducted at 7 degrees Kelvin (-447 Fahrenheit), so any everyday use of the process is far in the future. However, proving it possible is a first step.

"The reason people are really excited about this, is that Moore's law [which says the number of transistors in an integrated circuit doubles every two years] is predicted to end soon. It no longer works because it has hit its fundamental limit," Zeng said.

"Current computer chips rely on the movement of electrical charges, and that generates an enormous amount of heat as computers get more powerful. Our work has really pushed valleytronics a step closer in getting over that challenge."
Contributors to the study included the physics graduate students from UB: Chuan Zhao, Tenzin Norden, Peiyao Zhang, Fan Sun; plus researchers at Nanjing Tech University and Xi'an Jiaotong University in China; University of Waterloo in Canada; University of Nebraska-Omaha; and University of Crete in Greece.

University at Buffalo

Related Magnetic Field Articles:

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
New world record magnetic field
Scientists at the University of Tokyo have recorded the largest magnetic field ever generated indoors -- a whopping 1,200 tesla, as measured in the standard units of magnetic field strength.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at