Nav: Home

Earthquakes can make thrust faults open violently and snap shut

May 01, 2017

It is a common trope in disaster movies: an earthquake strikes, causing the ground to rip open and swallow people and cars whole. The gaping earth might make for cinematic drama, but earthquake scientists have long held that it does not happen.

Except, it can, according to new experimental research from Caltech.

The work, appearing in the journal Nature on May 1, shows how the earth can split open -- and then quickly close back up -- during earthquakes along thrust faults.

Thrust faults have been the site of some of the world's largest quakes, such as the 2011 Tohoku earthquake off the coast of Japan, which damaged the Fukushima nuclear power plant. They occur in weak areas of the earth's crust where one slab of rock compresses against another, sliding up and over it during an earthquake.

A team of engineers and scientists from Caltech and École normale supérieure (ENS) in Paris have discovered that fast ruptures propagating up toward the earth's surface along a thrust fault can cause one side of a fault to twist away from the other, opening up a gap of up to a few meters that then snaps shut.

Thrust fault earthquakes generally occur when two slabs of rock press against one another, and pressure overcomes the friction holding them in place. It has long been assumed that, at shallow depths the plates would just slide against one another for a short distance, without opening.

However, researchers investigating the Tohoku earthquake found that not only did the fault slip at shallow depths, it did so by up to 50 meters in some places. That huge motion, which occurred just offshore, triggered a tsunami that caused damage to facilities along the coast of Japan, including at the Fukushima Daiichi Nuclear Power Plant.

In the Nature paper, the team hypothesizes that the Tohoku earthquake rupture propagated up the fault and--once it neared the surface -- caused one slab of rock to twist away from another, opening a gap and momentarily removing any friction between the two walls. This allowed the fault to slip 50 meters.

That opening of the fault was supposed to be impossible.

"This is actually built into most computer models of earthquakes right now. The models have been programed in a way that dictates that the walls of the fault cannot separate from one another," says Ares Rosakis, Theodore von Kármán Professor of Aeronautics and Mechanical Engineering at Caltech and one of the senior authors of the Nature paper. "The findings demonstrate the value of experimentation and observation. Computer models can only be as realistic as their built-in assumptions allow them to be."

The international team discovered the twisting phenomenon by simulating an earthquake in a Caltech facility that has been unofficially dubbed the "Seismological Wind Tunnel." The facility started as a collaboration between Rosakis, an engineer studying how materials fail, and Hiroo Kanamori, a seismologist exploring the physics of earthquakes and a coauthor of the Nature study. "The Caltech research environment helped us a great deal to have close collaboration across different scientific disciplines," Kanamori said. "We seismologists have benefited a great deal from collaboration with Professor Rosakis's group, because it is often very difficult to perform experiments to test our ideas in seismology."

At the facility, researchers use advanced high-speed optical diagnostics to study how earthquake ruptures occur. To simulate a thrust fault earthquake in the lab, the researchers first cut in half a transparent block of plastic that has mechanical properties similar to that of rock. They then put the broken pieces back together under pressure, simulating the tectonic load of a fault line. Next, they place a small nickel-chromium wire fuse at the location where they want the epicenter of the quake to be. When they set off the fuse, the friction at the fuse's location is reduced, allowing a very fast rupture to propagate up the miniature fault. The material is photoelastic, meaning that it visually shows -- through light interference as it travels in the clear material -- the propagation of stress waves. The simulated quake is recorded using high-speed cameras and the resulting motion is captured by laser velocimeters (particle speed sensors).

"This is a great example of collaboration between seismologists, tectonisists and engineers. And not to put too fine a point on it, US/French collaboration," says Harsha Bhat, coauthor of the paper and a research scientist at ENS. Bhat was previously a postdoctoral researcher at Caltech.

The team was surprised to see that, as the rupture hit the surface, the fault twisted open and then snapped shut. Subsequent computer simulations--with models that were modified to remove the artificial rules against the fault opening--confirmed what the team observed experimentally: one slab can twist violently away from the other. This can happen both on land and on underwater thrust faults, meaning that this mechanism has the potential to change our understanding of how tsunamis are generated.
-end-
The paper is titled "Experimental evidence that thrust earthquake ruptures might open faults." The lead author is Vahe Gabuchian (MS '08, PhD '15), a former PhD student at Caltech's Graduate Aerospace Laboratories (GALCIT), and coauthors include Raúl Madariaga of ENS. This research was funded by the National Science Foundation. The study can be found online at http://www.nature.com/nature/journal/vaop/ncurrent/full/nature22045.html

California Institute of Technology

Related Earthquake Articles:

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
Earthquake in super slo-mo
A big earthquake occurred south of Istanbul in the summer of 2016, but it was so slow that nobody noticed.
A milestone for forecasting earthquake hazards
In a new study in Science Advances, researchers report that their physics-based model of California earthquake hazards replicated estimates from the state's leading statistical model.
Mw 5.4 Pohang earthquake tied to geothermal activity?
The Mw 5.4 Pohang earthquake that occurred near a geothermal site in South Korea last year was likely triggered by fluid injection at the geothermal plant, two separate reports conclude.
Seismologists introduce new measure of earthquake ruptures
A team of seismologists has developed a new measurement of seismic energy release that can be applied to large earthquakes.
Residual strain despite mega earthquake
On Christmas Day 2016, the earth trembled in southern Chile.
The losses that come after the earthquake: Devastating and costly
The study, titled, 'Losses Associated with Secondary Effects in Earthquakes,' published by Frontiers in Built Environmen, looks at the devastation resulting from secondary disasters, such as tsunamis, liquefaction of sediments, fires, landslides, and flooding that occurred during 100 key earthquakes that occurred from 1900 to the present.
More Earthquake News and Earthquake Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.