Nav: Home

Photoluminescent display absorbs, converts light into energy

May 01, 2017

BELLINGHAM, Washington, USA , and CARDIFF, UK -- By replacing the phosphor screen in a laser phosphor display (LPD) with a luminescent solar concentrator (LSC), one can harvest energy from ambient light as well as display high-resolution images. "Energy-harvesting laser phosphor display and its design considerations", published recently by SPIE, the international society for optics and photonics, in the Journal of Photonics for Energy, describes the development, processes, and applications of an LPD.

In a proof-of-concept experiment, lead author Ichiro Fujieda and his colleagues at Ritsumeikan University fabricated a 95 × 95 × 10 mm screen by sandwiching a thin layer of coumarin 6 with two transparent plates. These plates guided the photoluminescent (PL) photons emitted in both directions toward their edge surfaces. After removing the light source in a DMD-based commercial grade projector and feeding a blue laser beam into its optics, the screen generated green images.

Attaching a photodiode with a 10 × 10 mm sensitive area on the bottom edge of the screen to record the power of the PL photons indicated that a fully covered version would harvest up to 71% of the incoming optical power. However, a ghost image was noticeable when displaying a high-contrast still image.

The researchers address two aspects in their design considerations.

First, tiling small modules and extracting the PL photons in each module reduces the thickness of a large-area system and alleviates the effect of self-absorption. For seamless tiling, attaching an output coupler to the wave guiding plate and mounting solar cells provides an optimal solution.

Second, the origin of the ghost image is the PL photons reflecting at the interface between the rear plate and the outside environment. By reducing the thickness of the rear plate on the LPD, they were able to eliminate this optical cross-talk between pixels.

Journal of Photonics for Energy associate editor Loucas Tsakalakos called the study "a unique and novel application of a luminescent solar concentrator for display applications. The work shows practical operation of such a device, describes the basic operational principle and expected energy harvesting capability of such a system, and describes ways of improving the design in future work."
-end-
Coauthors are Shunsuke Itaya, Masamichi Ohta, Yuuki Hirai, and Takamasa Kohmoto.

Zakya Kafafi, adjunct professor in the Department of Electrical and Computer Engineering of Lehigh University, is editor-in-chief of the Journal of Photonics for Energy. Launched in 2011, Journal of Photonics for Energy is published digitally in the SPIE Digital Library and in print. The journal covers fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.

The SPIE Digital Library contains more than 458,000 articles from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year. Abstracts are freely searchable, and a number of journal articles are published with open access.

About SPIE

SPIE is the international society for optics and photonics, an educational not-for-profit organization founded in 1955 to advance light-based science, engineering, and technology. The Society serves nearly 264,000 constituents from approximately 166 countries, offering conferences and their published proceedings, continuing education, books, journals, and the SPIE Digital Library. In 2016, SPIE provided $4 million in support of education and outreach programs. http://www.spie.org

SPIE--International Society for Optics and Photonics

Related Photonics Articles:

First bufferless 1.5 μm III-V lasers grown directly on silicon wafers in Si-photonics
Researchers from HKUST have reported the world's first 1.5 μm III-V lasers directly grown on the industry-standard 220 nm SOI (silicon-on-insulators) wafers without buffer, potentially paving an opening to the 'holy grail' for present silicon (Si-) photonics research.
City College leads new photonics breakthrough
A new approach to trapping light in artificial photonic materials by a City College of New York-led team could lead to a tremendous boost in the transfer speed of data online.
Electrochemistry to benefit photonics: Nanotubes can control laser pulses
An international team of scientists led by researchers from the Laboratory of Nanomaterials at the Skoltech Center for Photonics and Quantum Materials (CPQM) has shown that the nonlinear optical response of carbon nanotubes can be controlled by electrochemical gating.
Compute at the speed of light
A new way to achieve integrated photonics--a new device has been developed at the University of Delaware that could have applications in imaging, sensing and quantum information processing, such as on-chip transformation optics, mathematical operations and spectrometers.
Harnessing photonics for at-home disease detection
With nothing more than a photonic chip and an ordinary camera, EPFL researchers have managed to count biomolecules one by one in a small sample and determine their position.
UCF researchers develop first sypersymmetric laser array
A team of University of Central Florida researchers has overcome a long-standing problem in laser science, and the findings could have applications in surgery, drilling and 3D laser mapping.
Advanced Photonics, a new SPIE-CLP open-access journal, publishes its first issue
Today SPIE, the international society for optics and photonics, and Chinese Laser Press (CLP), published the inaugural issue of Advanced Photonics, a collaborative, open-access journal, featuring the most impactful fundamental and applied research across optics and photonics technologies.
The future of photonics using quantum dots
Fiber-optic cables package everything from financial data to cat videos into light, but when the signal arrives at your local data center, it runs into a silicon bottleneck.
New laser technique may help detect chemical warfare in atmosphere
The Department of Homeland Security could benefit from a reliable, real-time instrument that could scan the atmosphere for toxic agents in order to alert communities to a biological or chemical attack.
Topological insulators are among this year's top achievements in photonics
Optics & Photonics News recognised a recent study on three-dimensional topological insulators as one of the most promising advances in photonics this year.
More Photonics News and Photonics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.