Novel cancer vaccine strategy blocks death of tumor-specific cytotoxic T cells

May 01, 2018

AUGUSTA, Ga. (May 1, 2018) - New research published in Cancer Immunology Research by Drs. Esteban Celis and Hussein Sultan of the Georgia Cancer Center at Augusta University could serve as the stepping-stone in constructing vaccines with a greater likelihood of finding and attacking tumors in the human body.

According to Celis and Sultan, the key in this vaccine strategy is increasing the amount of time a cytokine called interleukin 2 (IL2) stays in the body. IL2 is a molecule in the immune system responsible for regulating the activity of some white blood cells known as killer T cells.

"After administering peptide-based vaccines in mouse models of cancer, we saw that sustained IL2 signaling dramatically increased the number of tumor-specific cancer-killing T cells (CD8+)," said Dr. Hussein Sultan, a postdoctoral fellow in the laboratory of Celis, leader of the Center's Cancer Immunology, Inflammation and Tolerance Program.

During their experiments, Celis and Sultan noticed there was also an increase in the T cells' ability to resist cancer immune evasion caused by a protein called programmed death-ligand 1 (PD-L1). It is well known that the PD-L1 protein can be produced by tumor cells, allowing them to evade destruction by the killer T cells.

"Together, these results substantially improved the antitumor efficacy of peptide-based vaccines in tumor-bearing mice," Sultan said.

Celis added, "In order to be effective, IL2 needed to be administered either as a complex of IL2 and anti-IL2 antibody, or in the form of polyethylene glycol-modified IL2 (PEG-IL-2). These formulations prolonged the half-life of IL2, allowing sustained activation of the IL2 receptor on vaccine-generated T cells, allowing them to survive longer in the body and attack the tumor."

According to Celis, it is difficult for vaccines to induce antibodies against tumors because most of the tumor antigens are not foreign proteins, as is the case with viruses. On the other hand, T cells have the capacity to recognize other types of antigens.

"As we know, cancer cells are created when normal cells undergo certain mutations," Celis said. "So, they don't always look foreign to our immune system."

Both Celis and Sultan hope their observations in mouse models of cancer can find their way into clinical studies with human cancer patients.

"Working on this research project was very rewarding and exciting," Sultan said. "I want to help the scientific community discover insights on how to use the body's immune system to fight this devastating disease."
-end-


Medical College of Georgia at Augusta University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.