Nav: Home

'Exotic' genes may improve cotton yield and quality

May 01, 2019

May 1, 2019 - Cotton breeders face a "Catch-22." Yield from cotton crops is inversely related to fiber quality. In general, as yield improves, fiber quality decreases, and vice-versa. "This is one of the most significant challenges for cotton breeders," says Peng Chee, a researcher at the University of Georgia.

To overcome the yield vs quality challenge, Chee and colleagues turned to obsolete cultivars - or strains - of cotton with 'exotic' genetic material. In a new study, they report findings that could help breeders improve cotton fiber quality while maintaining or even improving yield.

The study focused on the genetics of hybrid 'Sealand' cultivars. These cultivars were developed by breeding two different species of cotton - Upland and Sea Island. Sea Island cotton is the type generally also known as "Pima or Egyptian cotton" from the species Gossypium barbadense. Its fibers are found in the highest quality garments and linens, due to its long, strong and fine fibers.

About 97% of the cotton grown in the United States is Upland cotton from the species Gossypium hirsutum. Upland cotton has much higher yields and broader adaptation, but lower fiber quality compared to Pima cotton. "The breeding challenge lies in transferring Pima fiber quality to Upland," says Chee.

Because they are two different species, there are significant genetic barriers between Upland and Pima. These differences can cause genetic abnormalities during and after breeding. Starting in the 1930s and 40s, breeders at the USDA successfully bred Upland with Sea Island cotton species. The results of these breeding efforts were the Sealand cotton cultivars, which has the appearance of Upland but with much improved fiber quality. In fact, a couple of Sealand cultivars were commercially grown briefly in parts of the US in the 1950s. "However, the genetic details of Sealand cultivars have remained largely unknown," says Chee.

Until now. Chee and colleagues generated genetic 'maps' of two Sealand cultivars. They found that the superior fiber quality of Sealand cotton were in part due to genes inherited from the Sea Island cotton. Fiber length, for example, is one aspect of cotton fiber quality. The researchers found that two of the three genetic segments controlling fiber length in one of the Sealand cultivars was inherited from the Sea Island parent.

"These detailed genetic dissections help us better understand interspecies hybridization," says Chee. "Now that we know which part of the genome controls fiber quality, we can now develop tools to select for these traits. We can also select desirable combinations of genes to improve multiple fiber quality traits."

Improving cotton quality can have ramifications for international trade. The global cotton import-export market is estimated to be worth more than 12 billion dollars. The United States is the largest exporter of cotton.

In addition to improving fiber quality, there may be other benefits to combining Pima and Upland genetics. "Upland cotton has been domesticated from a very small set of wild relatives," says Chee. "Selection for specific traits in the distant past led to the loss of other potentially useful traits."

To address the issue of low genetic diversity, breeders turn to wild relatives or 'cousins", such as Pima. They search for useful genes influencing important traits, such fiber quality. They also look for genes connected to other traits, including drought tolerance and disease resistance.

Genetic segments from Pima cotton that have positive effects on fiber quality have been tagged with molecular markers. These markers make it easier for breeders to track genetic segments through generations. Cotton breeders can now use these genetic tools to guide their efforts in breeding new cultivars. For example, they can focus on the portions of the genome that improve fiber quality while maintaining or even increasing yields.

The researchers are testing a small subset of the Pima genetic segments they discovered in the study in different genetic backgrounds. "We want to confirm their desirable effects across a more diverse set of varieties," says Chee. "Then they will be more useful in cotton breeding programs across the cotton belt."
-end-
Chee's research was recently published in Crop Science. Partial financial support came from the NSF-PFI (IIP-091856), USDA-IFAFS (0052100-9685), Georgia Cotton Commission and Cotton Incorporated (17-500GA and 13-712).

American Society of Agronomy

Related Genetics Articles:

Mapping millet genetics
New DNA sequences will aid in the development of improved millet varieties
Genetics to feed the world
A study, published in Nature Genetics, demonstrated the effectiveness of the technology known as genomic selection in a wheat improvement program.
Genetics researchers find new neurodevelopmental syndrome
Researchers have identified a gene mutation that causes developmental delay, intellectual disability, behavioral abnormalities and musculoskeletal problems in children.
The genetics of cancer
A research team has identified a new circular RNA (ribonucleic acid) that increases tumor activity in soft tissue and connective tissue tumors.
New results on fungal genetics
An international team of researchers has found unusual genetic features in fungi of the order Trichosporonales.
Mouse genetics influences the microbiome more than environment
Genetics has a greater impact on the microbiome than maternal birth environment, at least in mice, according to a study published this week in Applied and Environmental Microbiology.
New insights into genetics of fly longevity
Alexey Moskalev, Ph.D., Head of the Laboratory of Molecular Radiobiology and Gerontology Institute of Biology, and co-authors from the Institute of biology of Komi Science Center of RAS, Engelgard's Institute of molecular biology, involved in the study of the aging mechanisms and longevity of model animals announce the publication of a scientific article titled: 'The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax' in Frontiers in Genetics - a leading open science platform.
Some personal beliefs and morals may stem from genetics
Penn State researchers found that while parents can help encourage their children to develop into responsible, conscientious adults, there is an underlying genetic factor that influences these traits, as well.
X chromosome: how genetics becomes egalitarian
In cell biology, men and women are unequal: men have an X chromosome, while women have two.
The link between obesity, the brain, and genetics
Clinicians should consider how the way we think can make us vulnerable to obesity, and how obesity is genetically intertwined with brain structure and mental performance, according to new research.
More Genetics News and Genetics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.