Nav: Home

Army research may be used to treat cancer, heal combat wounds

May 01, 2019

RESEARCH TRIANGLE PARK, N.C. (May 1, 2019) - Army research is the first to develop computational models using a microbiology procedure that may be used to improve novel cancer treatments and treat combat wounds.

Using the technique, known as electroporation, an electrical field is applied to cells in order to increase the permeability of the cell membrane, allowing chemicals, drugs, or DNA to be introduced into the cell. For example, electro-chemotherapy is a cutting-edge cancer treatment that uses electroporation as a means to deliver chemotherapy into cancerous cells.

The research, funded by the U.S. Army and conducted by researchers at University of California, Santa Barbara and Université de Bordeaux, France, has developed a computational approach for parallel simulations that models the complex bioelectrical interaction at the tissue scale.

Previously, most research has been conducted on individual cells, and each cell behaves according to certain rules.

"When you consider a large number of them together, the aggregate exhibits novel coherent behaviors," said Pouria Mistani, a researcher at UCSB. "It is this emergent phenomenon that is crucial for developing effective theories at the tissue-scale -- novel behaviors that emerge from the coupling of many individual elements."

This new research, published in the Journal of Computational Physics, is funded by the U.S. Combat Capabilities Development Command's Army Research Lab, the Army's corporate research laboratory known as ARL, through its Army Research Office.

"Mathematical research enables us to study the bioelectric effects of cells in order to develop new anti-cancer strategies," said Dr. Joseph Myers, Army Research Office mathematical sciences division chief. "This new research will enable more accurate and capable virtual experiments of the evolution and treatment of cells, cancerous or healthy, in response to a variety of candidate drugs."

Researchers said a crucial element in making this possible is the development of advanced computational algorithms.

"There is quite a lot of mathematics that goes into the design of algorithms that can consider tens of thousands well-resolved cells," said Frederic Gibou, a faculty member in the Department of Mechanical Engineering and Computer Science at UCSB.

Another potential application is accelerating combat wound healing using electric pulsation.

"It's an exciting, but mainly unexplored area that stems from a deeper discussion at the frontier of developmental biology, namely how electricity influences morphogenesis," -- or the biological process that causes an organism to develop its shape -- Gibou said. "In wound healing, the goal is to externally manipulate electric cues to guide cells to grow faster in the wounded region and accelerate the healing process."

The common factor among these applications is their bioelectric physical nature. In recent years, it has been established that the bioelectric nature of living organisms plays a pivotal role in the development of their form and growth.

To understand bioelectric phenomena, Gibou's group considered computer experiments on multicellular spheroids in 3-D. Spheroids are aggregates of a few tens of thousands of cells that are used in biology because of their structural and functional similarity with tumors.

"We started from the phenomenological cell-scale model that was developed in the research group of our colleague, Clair Poignard, at the Université de Bordeaux, France, with whom we have collaborated for several years," Gibou said.

This model, which describes the evolution of transmembrane potential on an isolated cell, has been compared and validated with the response of a single cell in experiments.

"From there, we developed the first computational framework that is able to consider a cell aggregate of tens of thousands of cells and to simulate their interactions," he said. "The end goal is to develop an effective tissue-scale theory for electroporation."

One of the main reasons for the absence of an effective theory at the tissue scale is the lack of data, according to Gibou and Mistani. Specifically, the missing data in the case of electroporation is the time evolution of the transmembrane potential of each individual cell in a tissue environment. Experiments are not able to make those measurements, they said.

"Currently, experimental limitations prevent the development of an effective tissue-level electroporation theory," Mistani said. "Our work has developed a computational approach that can simulate the response of individual cells in a spheroid to an electric field as well as their mutual interactions."

Each cell behaves according to certain rules.

"But when you consider a large number of them together, the aggregate exhibits novel coherent behaviors," Mistani said. "It is this emergent phenomenon that is crucial for developing effective theories at the tissue-scale -- novel behaviors that emerge from the coupling of many individual elements."

The effects of electroporation used in cancer treatment, for example, depend on many factors, such as the strength of the electric field, its pulse and frequency.

"This work could bring an effective theory that helps understand the tissue response to these parameters and thus optimize such treatments," Mistani said. "Before our work, the largest existing simulations of cell aggregate electroporation only considered about one hundred cells in 3-D, or were limited to 2-D simulations. Those simulations either ignored the real 3-D nature of spheroids or considered too few cells for tissue-scale emergent behaviors to manifest."

The researchers are currently mining this unique dataset to develop an effective tissue-scale theory of cell aggregate electroporation.
-end-
The CCDC Army Research Laboratory (ARL) is an element of the U.S. Army Combat Capabilities Development Command. As the Army's corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power. Through collaboration across the command's core technical competencies, CCDC leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more effective to win our Nation's wars and come home safely. CCDC is a major subordinate command of the U.S. Army Futures Command.

U.S. Army Research Laboratory

Related Cancer Treatment Articles:

NUS researchers show potential liver cancer treatment by targeting cancer stem-like cells
NUS researchers from the Cancer Science Institute of Singapore and the N.1 Institute for Health have shown the potential use of small molecule inhibitors to treat advanced liver cancer.
Breast cancer gene a potential target for childhood liver cancer treatment
Hepatoblastoma is a rare liver cancer that mainly affects infants and young children and is associated with mutations in the β-catenin gene.
Light therapy could replace opioids as main treatment for cancer treatment side effect
A worldwide coalition of researchers and clinicians has agreed that light therapy is among the most effective interventions for the prevention of oral mucositis, painful ulcers in the mouth resulting from cancer therapy.
Scanning for cancer treatment
11,000 people are predicted to die from acute myeloid leukemia (AML) in 2019.
Visualizing better cancer treatment
Researchers have engineered nanoscale protein micelles capable of both delivering chemotherapeutic drugs and of being tracked by MRI.
How prostate cancer becomes treatment resistant
Scientists from Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified how prostate cancer transforms into a deadly treatment-resistant prostate cancer subtype called neuroendocrine prostate cancer (NEPC) following treatment with anti-androgen therapy.
Proposed cancer treatment may boost lung cancer stem cells, study warns
Epigenetic therapies -- targeting enzymes that alter what genes are turned on or off in a cell -- are of growing interest in the cancer field as a way of making a cancer less aggressive or less malignant.
How not saying 'cancer' for low-risk thyroid cancer may affect treatment preferences, patient anxiety
Could removing 'cancer' from the terminology for low-risk small papillary thyroid cancers (PTCs) reduce patients' anxiety so they consider less invasive treatment than surgery and avoid possible overtreatment for what can be indolent tumors?
Treatment of cancer could become possible with adenovirus
An international team of researchers led by professor Niklas Arnberg at Umeå University, shows that adenovirus binds to a specific type of carbohydrate that is overexpressed on certain types of cancer cells.
A novel precision cancer model opens doors to personalized cancer treatment
Researchers from the Seve Ballesteros Foundation-CNIO Brain Tumour Group at the Spanish National Cancer Research Centre (CNIO) have developed an extremely powerful and versatile mouse model that will improve cancer research and accelerate preclinical testing of novel targeted therapies.
More Cancer Treatment News and Cancer Treatment Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.