Nav: Home

Army research may be used to treat cancer, heal combat wounds

May 01, 2019

RESEARCH TRIANGLE PARK, N.C. (May 1, 2019) - Army research is the first to develop computational models using a microbiology procedure that may be used to improve novel cancer treatments and treat combat wounds.

Using the technique, known as electroporation, an electrical field is applied to cells in order to increase the permeability of the cell membrane, allowing chemicals, drugs, or DNA to be introduced into the cell. For example, electro-chemotherapy is a cutting-edge cancer treatment that uses electroporation as a means to deliver chemotherapy into cancerous cells.

The research, funded by the U.S. Army and conducted by researchers at University of California, Santa Barbara and Université de Bordeaux, France, has developed a computational approach for parallel simulations that models the complex bioelectrical interaction at the tissue scale.

Previously, most research has been conducted on individual cells, and each cell behaves according to certain rules.

"When you consider a large number of them together, the aggregate exhibits novel coherent behaviors," said Pouria Mistani, a researcher at UCSB. "It is this emergent phenomenon that is crucial for developing effective theories at the tissue-scale -- novel behaviors that emerge from the coupling of many individual elements."

This new research, published in the Journal of Computational Physics, is funded by the U.S. Combat Capabilities Development Command's Army Research Lab, the Army's corporate research laboratory known as ARL, through its Army Research Office.

"Mathematical research enables us to study the bioelectric effects of cells in order to develop new anti-cancer strategies," said Dr. Joseph Myers, Army Research Office mathematical sciences division chief. "This new research will enable more accurate and capable virtual experiments of the evolution and treatment of cells, cancerous or healthy, in response to a variety of candidate drugs."

Researchers said a crucial element in making this possible is the development of advanced computational algorithms.

"There is quite a lot of mathematics that goes into the design of algorithms that can consider tens of thousands well-resolved cells," said Frederic Gibou, a faculty member in the Department of Mechanical Engineering and Computer Science at UCSB.

Another potential application is accelerating combat wound healing using electric pulsation.

"It's an exciting, but mainly unexplored area that stems from a deeper discussion at the frontier of developmental biology, namely how electricity influences morphogenesis," -- or the biological process that causes an organism to develop its shape -- Gibou said. "In wound healing, the goal is to externally manipulate electric cues to guide cells to grow faster in the wounded region and accelerate the healing process."

The common factor among these applications is their bioelectric physical nature. In recent years, it has been established that the bioelectric nature of living organisms plays a pivotal role in the development of their form and growth.

To understand bioelectric phenomena, Gibou's group considered computer experiments on multicellular spheroids in 3-D. Spheroids are aggregates of a few tens of thousands of cells that are used in biology because of their structural and functional similarity with tumors.

"We started from the phenomenological cell-scale model that was developed in the research group of our colleague, Clair Poignard, at the Université de Bordeaux, France, with whom we have collaborated for several years," Gibou said.

This model, which describes the evolution of transmembrane potential on an isolated cell, has been compared and validated with the response of a single cell in experiments.

"From there, we developed the first computational framework that is able to consider a cell aggregate of tens of thousands of cells and to simulate their interactions," he said. "The end goal is to develop an effective tissue-scale theory for electroporation."

One of the main reasons for the absence of an effective theory at the tissue scale is the lack of data, according to Gibou and Mistani. Specifically, the missing data in the case of electroporation is the time evolution of the transmembrane potential of each individual cell in a tissue environment. Experiments are not able to make those measurements, they said.

"Currently, experimental limitations prevent the development of an effective tissue-level electroporation theory," Mistani said. "Our work has developed a computational approach that can simulate the response of individual cells in a spheroid to an electric field as well as their mutual interactions."

Each cell behaves according to certain rules.

"But when you consider a large number of them together, the aggregate exhibits novel coherent behaviors," Mistani said. "It is this emergent phenomenon that is crucial for developing effective theories at the tissue-scale -- novel behaviors that emerge from the coupling of many individual elements."

The effects of electroporation used in cancer treatment, for example, depend on many factors, such as the strength of the electric field, its pulse and frequency.

"This work could bring an effective theory that helps understand the tissue response to these parameters and thus optimize such treatments," Mistani said. "Before our work, the largest existing simulations of cell aggregate electroporation only considered about one hundred cells in 3-D, or were limited to 2-D simulations. Those simulations either ignored the real 3-D nature of spheroids or considered too few cells for tissue-scale emergent behaviors to manifest."

The researchers are currently mining this unique dataset to develop an effective tissue-scale theory of cell aggregate electroporation.
-end-
The CCDC Army Research Laboratory (ARL) is an element of the U.S. Army Combat Capabilities Development Command. As the Army's corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power. Through collaboration across the command's core technical competencies, CCDC leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more effective to win our Nation's wars and come home safely. CCDC is a major subordinate command of the U.S. Army Futures Command.

U.S. Army Research Laboratory

Related Cancer Treatment Articles:

New possible target for cancer treatment
Scientists at Karolinska Institutet in Sweden report that cancer cells and normal cells use different 'gene switches' in order to regulate the expression of genes that control growth.
Adverse effects, quality of life of treatment vs. no treatment for men with localized prostate cancer
Two studies published by JAMA examine the adverse effects and quality of life as reported by men with localized prostate cancer who chose treatment, observation or active surveillance.
Potential new cancer treatment activates cancer-engulfing cells
Macrophages are a type of white blood cell that can engulf and destroy cancer cells.
IBS breakthrough in the treatment of cancer
The research team, headed by the Center's director Myung Kyungjae, made the announcement in a manuscript published in the American Association for Cancer Research on June 6.
Targeted treatment for liver cancer under way
Researchers at the University of Eastern Finland and Eberhard Karls Universität Tübingen have discovered a new molecular mechanism that can be used to inhibit the growth of hepatocellular carcinoma, which is the most common liver cancer.
Timing the treatment of cancer cells
Timing may not be everything, but it could be important in understanding why an anticancer treatment like radiation produces different results against cancer cells, according to a new study by Sheng-hong Chen and colleagues.
Cancer treatment on a cellular level
The most common treatments for cancer are radiation and chemotherapy.
Cancer Treatment Centers of America hosts second-annual cancer treatments conference
Cancer Treatment Centers of America (CTCA) at Western Regional Medical Center (Western) is hosting its second Annual New Treatments in Oncology (ANTO) conference March 5, focused on advances in cancer research, new treatments and patient care.
Cancer treatment: Therapeutic approach gives hope for the treatment of multiple myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy.
New method for better treatment of breast cancer
A new study shows that a novel imaging-based method for defining appropriateness of breast cancer treatment is as accurate as the current standard-of-care and could reduce the need for invasive tissue sampling.

Related Cancer Treatment Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".