Nav: Home

Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells

May 01, 2019

A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.

High-grade serous carcinoma is the most common form of ovarian cancer and the most deadly. Most patients are diagnosed at an advanced stage when the disease has already spread. Five-year survival is around 50 percent.

"Until quite recently, scientists have focused on the tumor itself," said the study's senior author Ernst Lengyel, MD, PhD, professor and chair of obstetrics and gynecology at the University of Chicago Medicine. "Everyone does."

But given the lack of progress with that approach and the fact the tumors are complex organs comprised of different tumor-supporting cell types (stroma), "we thought it might be better to focus less on the cancer and more on the stroma, the supporting tissue that surrounds the cancer and enables its growth."

In the May 1, 2019 issue of Nature, the researchers show that the stroma has a major impact on cancer cells. "In this case," Lengyel said, "it makes them more malignant, more aggressive and more invasive. The stroma is often bigger than the cancer itself."

In close collaboration with Fabian Coscia, PhD, and Matthias Mann, PhD, from the Max Planck Institute of Biochemistry in Munich and University of Copenhagen, the researchers profiled the expression of more than 5,000 proteins in both normal and cancerous tissues derived from minute amounts of patient biobank material.

"For the first time, we were able to distinguish the molecular changes in the cancer cells from the ones happening in the adjacent stroma throughout disease progression," explained Coscia. "When we then got our data, we were fascinated to find that the metastatic stroma was characterized by a highly conserved protein signature, as opposed to the cancer cells."

These metastatic changes were seen in all analyzed patients. The researchers are now trying to understand their functional role during metastasis with the goal of finding novel therapeutic targets.

In the process, they discovered a metabolic enzyme, nicotinamide N-methyltransferase (NNMT), that was highly expressed in the stroma surrounding metastatic cancer cells. They found that NNMT causes widespread gene expression changes in the tumor stroma, converting normal fibroblasts to cancer-associated fibroblasts that support and accelerate tumor growth. Stromal NNMT expression encouraged ovarian cancer progression and metastasis. It was associated with very poor patient outcomes.

The researchers are now using high-throughput screening to find novel ways to inhibit this enzyme. "One method looked promising," said Mark Eckert, MD, research assistant professor in obstetrics and gynecology at the University of Chicago and first author of the study. "We have a backbone for several candidate inhibitors. We know our target, we know the structure, we know how to apply this and we have a sense of the direction. We are starting to understand how a normal fibroblast is converted into a cancer-associated fibroblast by this metabolic enzyme."

They also found that inhibition of NNMT activity reduced or even reversed many of the tumor-promoting effects of cancer-associated fibroblasts. This suggests, they note, that the stroma should be explored as a new treatment target.

Coscia, co-first author on the manuscript and leader of the proteomics analysis, added that "this method may be used to discover other proteins that are important for metastasis and to identify early changes during disease development."

"When we put it all together," Lengyel said, "it gave us exciting results. We have linked high-end technology, including proteomics and metabolomics, to improve our understanding of the stroma."
-end-
Additional authors of the study were Agnieszka Chryplewicz, Shawn Pan, Dominik Nahotko, Samantha Tienda, Marion Curtis, Diane Yamada, Jae Won Chang, Gang Li, Raymond Moellering, Kyle Hernandez, Jorge Andrade, Stephanie McGregor and Ricardo Lastra from the University of Chicago; Ivana Blaženović and Oliver Fiehn from the University of California at Davis; and Ruth Perets from the Clinical Research Institute at Rambam, Haifa, Israel.

"Proteomics reveals NNMT as a master metabolic regulator of cancer associated fibroblasts," was supported by a Marsha Rivkin Foundation award, grants from the National Institutes of Health and the National Cancer Institute, the Ludwig Institute for Cancer Research, the Arthur L. and Lee G. Herbst Professorship, funding support from S. and J. Harris, M. Field, J. Kane and A. Gerry, V Foundation for Cancer Research, the Körber Foundation/Körber European Science Prize, the Max-Planck Society for the Advancement of Science, the Novo Nordisk Foundation, and the University of Chicago Cancer Center Support Grant P30CA014599.

University of Chicago Medical Center

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.