The mystery behind cleft palate and lips: Study shines a light on genetic factors

May 01, 2019

PHILADELPHIA--Cleft lip and palate (CL/P) is the second most common birth defect in the world, affecting 1 in 700 live born babies. While the exact cause of CL/P is not well understood, investigators think it could be the result of a combination of genetics and environment. Cleft lip and palate are splits in the upper lip, the roof of the mouth, or both. This happens when cells in a baby's face and mouth don't fuse properly during early development. The result of a partial fusion, or no fusion at all, leaves a cleft.

In a new study published today in Science Advances, researchers from the Perelman School of Medicine at the University of Pennsylvania found more than 100 new genes that could lead to the development of CL/P. The team discovered that genetic variants near these genes are in regions of the genome called "enhancers," which regulate expression of genes to maintain proper cell identity.

Enrique Lin-Shiao, a doctoral student in the lab of Shelley L. Berger, PhD, the Daniel S. Och University Professor and director of the Penn Epigenetics Institute, described the role of the protein p63 in modulating expression of genes involved in craniofacial development. The transcription factor p63 guides other molecules to open or close DNA structures in the nucleus called chromatin. This duty of p63 helps enhancers do their job of allowing genes to be expressed into mRNA, or not. Mutations in human p63 lead to an array of developmental defects, including clefting. Knowledge is limited about p63's role in human craniofacial development due in part to a lack of comparable animal models. However, now it is known that p63 binds to and remodels chromatin to coordinate enhancers associated with epithelial cells that are important for the fusion of the palate during development.

"We combined our molecular findings with genome data from colleagues at the University of Bonn who work with genetic data of patients with cleft palates or lips," said Lin-Shiao. "In the datasets, we found that many of the genes that are highly associated with clefting are located near the enhancer regions that work with p63. This gives us brand new insight into the mechanisms that could lead to disease."

The team identified many new causal candidate genes and the enhancers that regulate them, providing answers to critical questions about CL/P. In the future, the team hopes that as they delve more into the biology of specific causative genes, new preventions and therapies for a range of craniofacial conditions that include CL/P, can be developed.
-end-
This work was funded by grants from the National Institutes of Health (R01 CA078831, F31 GM123744-01, F32 12461842, R15GM128049), the German Research Council, and the German Research Foundation.

Coauthors on the study are Yemin Lan, Julia Welzenbach, Katherine A. Alexander, Zhen Zhang, and Morgan Sammons, all from Penn, as well as Michael Knapp, Elisabeth Mangold, and Kerstin U. Ludwig, from the University of Bonn, Germany.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania(founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $7.8 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $425 million awarded in the 2018 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: the Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center--which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report--Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; and Pennsylvania Hospital, the nation's first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Home Care and Hospice Services, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.

Penn Medicine is powered by a talented and dedicated workforce of more than 40,000 people. The organization also has alliances with top community health systems across both Southeastern Pennsylvania and Southern New Jersey, creating more options for patients no matter where they live.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2018, Penn Medicine provided more than $525 million to benefit our community.

University of Pennsylvania School of Medicine

Related Epithelial Cells Articles from Brightsurf:

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Moffitt researchers identify protein that causes epithelial cancers to spread
In a new article published in the July issue of Cancer Research, Elsa Flores, Ph.D., and her team discovered a key protein that oscillates its expression through microRNA regulation to facilitate cancer spread to distant organs.

Epithelial GPS: Position of RNAi machinery is associated with epithelial identity
Researchers at the Medical University of South Carolina show in a new report that the RNA interference machinery, normally thought to reside in the nucleus or cytoplasm, predominantly localizes to these apical junctions and influences cell biology in the colon.

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Scientists modify CAR-T cells to target multiple sites on leukemia cells
In a preclinical study, scientists engineer new CAR-T cells to attack three sites on leukemia cells, instead of one.

Size matters: How cells pack in epithelial tissues
Small-cell clones in proliferating epithelia -- tissues that line all body surfaces -- organize very differently than their normal-sized counterparts, according to a recent study from the Stowers Institute for Medical Research.

Closing the gap -- a two-tier mechanism for epithelial barrier
Scientists from Japan's National Institute for Physiological Sciences and their collaborators report in a new study published in The Journal of Cell Biology that epithelial barrier is composed of two molecular systems with distinct barrier properties.

Dead cells disrupt how immune cells respond to wounds and patrol for infection
Immune cells prioritise the clearance of dead cells overriding their normal migration to sites of injury.

Revealed: How the 'Iron Man' of immune cells helps T cells fight infection
The immune system's killer T cells are crucial in fighting viral infections.

White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.

Read More: Epithelial Cells News and Epithelial Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.