Nav: Home

New clues to coastal erosion

May 01, 2019

New research has uncovered a missing nutrient source in coastal oceans, which could promote better water quality and sand management on popular beaches.

While the release of nutrients buried in the seabed 'feeds' coastal marine ecosystems, the latest research at Flinders University has found a new physical mechanism which erodes seabed sediment at depths up to 20 metres, well outside (between 10km and 20km) from the surf zone closer to shore.

This powerful natural process that is energetic enough to erode seabed sediment at up to 20 m, also adds to the nutrients stirred and moved by breaking surface waves nearer the beach, according to the new hydrodynamic modelling.

"This new knowledge has significant implications for coastal sediment management practices such as dredging," says Flinders University oceanographer Associate Professor Jochen Kaempf.

The study reveals that major sediment erosion follows from coast-parallel winds in an oceanic situation known as downwelling.

"Such winds trigger a swift coastal current - left-bounded by the coast in the Southern Hemisphere - that is accompanied by a vigorous stirring zone in nearshore waters," Associate Professor Kaempf says.

While this finding explains the high proportion of recycled nutrients in coastal ecosystems, it incidentally also points to a new mechanism of wind-driven sediment drift in coastal oceans that complements the well-known littoral drift in the surf zone.

"Along the Adelaide metropolitan coastline, for example, the wind-driven sediment drift tends to be predominantly southward and opposite to the northward sediment drift in the surf zone," explains Dr Kaempf.

"On the other hand, high turbidity levels following a seabed erosion event negatively impact the health of seagrass beds, and the sudden nutrient release can also trigger potentially harmful toxic algae blooms," says Dr Jochen Kaempf, who also is South Australian branch president of the Australian Meteorological and Oceanographic Society.

Dr Kaempf's latest paper calls for more field research and the development of reliable ocean forecasting models to study and predict the occurrence of such erosion events.
-end-
The paper, Extreme bed shear during coastal downwelling, has been published in Ocean Dynamics (Springer) https://link.springer.com/article/10.1007/s10236-019-01256-4

Flinders University

Related Water Quality Articles:

Study quantifies effect of 'legacy phosphorus' in reduced water quality
For decades, phosphorous has accumulated in Wisconsin soils. Though farmers have taken steps to reduce the quantity of the agricultural nutrient applied to and running off their fields, a new study from the University of Wisconsin-Madison reveals that a 'legacy' of abundant soil phosphorus in the Yahara watershed of Southern Wisconsin has a large, direct and long-lasting impact on water quality.
New standards for better water quality in Europe
The European Water Framework Directive (WFD) is due to be revised by 2019.
Investigating the impact of 'legacy sediments' on water quality
University of Delaware researcher Shreeram Inamdar has been awarded a $499,500 grant from the US Department of Agriculture (USDA) to determine if stream-bank legacy sediments are significant sources of nutrients to surface waters and how they may influence microbial processes and nutrient cycling in aquatic ecosystems.
Adaptive management of soil conservation is essential to improving water quality
The quality of our rivers and lakes could be placed under pressure from harmful levels of soluble phosphorus, despite well-intended measures to reduce soil erosion and better manage and conserve farmland for crop production, a new study shows.
Big data approach to water quality applied at shale drilling sites
A computer program is diving deep into water quality data from Pennsylvania, helping scientists detect potential environmental impacts of Marcellus Shale gas drilling.
UTA partners with Apache Corp. for baseline water quality study in Alpine High area
Chemists from the University of Texas at Arlington have partnered with Apache Corporation to conduct a baseline water quality study of groundwater and surface water in the newly discovered Alpine High resource play in West Texas.
Cleaner air may be driving water quality in Chesapeake Bay
A new study suggests that improvements in air quality over the Potomac watershed, including the Washington, D.C., metro area, may be responsible for recent progress on water quality in the Chesapeake Bay.
New water-quality data on impact of corn, soybeans on nitrate in Iowa streams
As Iowa farmers have planted more acres of corn to meet the demand driven by the corn-based ethanol industry, many models predicted that nitrate concentrations in Iowa streams would increase accordingly.
Illinois River water quality improvement linked to more efficient corn production
In a new University of Illinois study, nitrate concentrations and loads in the Illinois River from 1983 to 2014 were correlated with agricultural nitrogen use efficiency and nitrate discharged from Chicago's treated wastewater.
Harmful algal blooms and water quality
Harmful algal blooms (HABs) occur naturally, but their outbreaks are influenced by climate change and droughts, nutrient enrichment and manmade factors, such as contaminants from sewage and stormwater discharge, natural resource extraction or agricultural runoff, to name a few.

Related Water Quality Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...