Potential gene therapy carriers created that mimic viruses, without the risk

May 02, 2000

Chemists at Washington University in St. Louis have created tiny synthetic polymer particles that mimic viruses and show potential for a new direction in gene therapy and other potential biomedical applications.

The "nano" particle (a nanometer is roughly one-billionth of a yard) has the unlikely name of knedel (k-ned-l) because of its similarity to a popular Polish dumpling filled either with meat or sweets. The knedels are shell cross-linked structures surrounding a hydrophobic, or water insoluble, core domain. Needless to say, the knedels are too small to see with the naked eye. They have diameters ranging from 10 to 100 nanometers, so that they are of similar size to many globular proteins and viruses. In the body, they are expected to escape detection by the immune system.

Karen L. Wooley, Ph.D., professor of chemistry in Arts & Sciences, recently announced that she and her Washington University colleagues, Jianquan Liu, Ph.D., and Qi Zhang, Ph.D., both research assistants in chemistry, and Tomasz Kowaleski, Ph.D., research assistant professor in chemistry, have successfully hollowed out the knedel core to produce "nanocages" and attached a fluorescent tag to the core. They also attached a polypeptide called protein transduction domain (PTD) to the exterior of the nanostructure. They got this idea from Steven F. Dowdy, Ph.D., assistant professor of pathology at the Washington University School of Medicine in St. Louis. Dowdy demonstrated the efficiency with which PTD transduces proteins into cells.

With the aid of extremely powerful microscopes, Wooley and her colleagues were able to detect the peptide-bearing knedels binding to cell surfaces. Another group of nanoparticles without the PTD but with the fluorescent tags did not bind to target cells.

'New territory'

The accomplishment is a step toward using the knedel nanoparticles as potential gene therapy carriers, or vectors. Most gene therapy attempts today use live viruses that are weakened to carry RNA, DNA or other therapeutic payloads. However, gene therapy has met with great difficulties since its inception a decade ago, and much of the trouble surrounds the safe use of live viruses. The difficulty reached tragic proportions in September 1999, when an 18-year-old gene therapy patient died after being injected with a genetically altered adenovirus carrying a gene to control the boy's enzyme deficiency. Wooley's knedels are biomimics - they are designed to behave like viruses, which biochemically are attracted to hosts that they seek to infect. But a biomimic does not run the risk of a live virus, which, as in the case of the 18-year-old who died, may have toxic or, on the other hand, negligible effects.

"We're combining synthetic constructs with biological pieces," explains Wooley. "It's what is called bioconjugation, and it's really a whole new territory for us. We're interested in making nanoparticles with the hollow cages into which one could put peptides, genes, proteins and small molecule drugs, all sorts of biomedical possibilities, even scavenging other cells or molecules. Other researchers are doing similar things in particle research, but they can't seem to get down to the same size range that we can."

Wooley presented the details of these latest results at the American Chemical Society's National Meeting, held March 26-31, 2000, in San Francisco. Beyond gene therapy, Wooley and her group intend to explore the potential of the knedels as bio-scavengers. Because the particles also are chemically similar to lipoproteins, which comprise cholesterol, it might be possible to construct knedels that mimic high-density lipoproteins (HDL), so-called "good" cholesterol that scavenge low-density lipoproteins (LDL), or bad cholesterol. Next up for Wooley is a search for the appropriate genetic material to place into the nanocage for delivery to host targets.

"We don't have a candidate yet, but we're confident we will find one," Wooley says. "We've come a long way with knedels, with still farther to go."

Washington University in St. Louis

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.