Eat less, weigh more? Enzyme makes lean mice 'susceptible' to dietary fat

May 02, 2006

Working with genetically engineered mice, Johns Hopkins scientists have interfered with the brain's ability to control an animal's response to a high-fat diet. The report, to be published in the latest issue of the Proceedings of the National Academy of Sciences online the week of May 1, is based on the identification of a gene - CPT1c - the brain needs to manage body weight.

According to the researchers, the CPT1c gene protects against weight gain caused by a high-fat diet. So-called knockout mice lacking the CPT1c gene gain more weight than their littermates carrying normal copies of the gene.

"We think our study reveals a direct weight management pathway," says Michael Wolfgang, Ph.D., a postdoctoral fellow in the Department of Biological Chemistry at The Johns Hopkins University School of Medicine and an author of the report. "CPT1c seems to allow the body to respond immediately to the level of nutrients and fat in the bloodstream."

Hopeful that the discovery has broad implications for understanding the genetic underpinnings of obesity and weight management, the Hopkins investigators say the work affirms the central role of the brain in managing hunger and satiety and offers up new targets for drugs that manipulate CPT1c. But none have been developed so far, says Wolfgang.

The newly discovered gene makes a protein found only in the brain, notably in the region that controls hunger, thirst and metabolism - the hypothalamus. Proteins similar to CPT1c are known to help break down fat to release energy to feed cells. Mice lacking the CPT1c gene are the same length as their littermates who carry normal copies of the gene but on average weigh 15 percent less when fed a low-fat diet.

Further analysis revealed that when deprived of food for four hours prior to feeding with standard laboratory mouse chow, the knockout mutant mice ate about 25 percent less food than their normal siblings. Therefore, the researchers concluded, CPT1c must play a role in feeding behavior and appetite control.

And when fed a high-fat diet (mouse chow laced with lard) for 10 weeks, mice lacking CPT1c still ate less than their normal littermates, but they were much heavier.

What scientists already know about the regulation of body weight helps explain why the absence of CPT1c may have its seemingly paradoxical effect.

Under normal circumstances, says Wolfgang, body weight is maintained by a combination of food intake and energy expenditure, how hungry the body is, and how much energy cells need. Many cells in the body use a sugar called glucose as a source of energy. When the body is starved, the body literally feeds on itself, breaking down fat to form fatty acids that fuel energy needs. When the cells of the body are well fed and energy is in ample supply, molecular signals from the brain tell cells in the body to store the excess energy by converting it to fat. Weight gain results when food intake greatly exceeds energy expenditure. But when the brain's appetite/energy regulator is out of whack, so are the rules for gaining and losing weight.

"How do you know when to stop eating?" asks M. Daniel Lane, Ph.D., senior author of the study and a professor of biological chemistry in the Institute for Basic Biomedical Sciences at Hopkins. "The liver sure isn't going to tell you, it just keeps storing fat as long as the body is well fed." Instead, he notes, it is the control regions of the brain, namely the hypothalamus, that governs eating behavior.

Previously, the same researchers showed that a molecule called malonyl-CoA is critical for fat metabolism. And as it turns out, malonyl-CoA interacts with CPT1c, according to Lane.

Increasing the amount of malonyl-CoA in the liver causes those cells to synthesize fat, which is stored. Increasing malonyl-CoA in the hypothalamus somehow tells the cells in the body to break down fats for energy and the muscle cells to use more energy. Therefore, identifying molecules that interact with malonyl-CoA will help scientists understand how energy balance and body weight is controlled.

"We are beginning to understand what the hypothalamus inputs are, but unlike the liver, where nearly the whole organ is involved in the same thing, the brain is very specialized and only a few neurons do very specific things," says Lane. The researchers hope to further understand how malonyl-CoA and CPT1c function to control body weight and appetite.
-end-
Funding for this study was provided by Astellas Pharma Inc. Tsukuba.

Authors on the paper are Wolfgang, Yun Dai, Seung Hun Cha and Lane, all of Hopkins, and Takeshi Kurama, Akira Suwa, Makoto Asaumi, Shun-ichiro Matsumoto and Teruhiko Shimokawa, of Astellas Pharma Inc. Tsukuba of Japan.

Johns Hopkins Medicine

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.