Learning the language of DNA

May 02, 2006

An international consortium of scientists, including a team from The University of Queensland's Institute for Molecular Bioscience (IMB), is a step closer to the next generation of treatments to combat disease, after publishing a comprehensive analysis of the human and mouse transcriptomes.

A senior member of the consortium and IMB researcher Professor David Hume said transcriptome describes all of the information read from the genome by a cell at any given time.

"Essentially, we need to understand the language that cells use to read DNA in order to know how processes in the body are controlled," Professor Hume said.

"This knowledge will be a major resource to the biomedical research community."

Part of understanding the language of cells lies in identifying promoters - the DNA regions at the start of genes that regulate their activity.

"We have identified the core promoters of the large majority of genes in the mouse and human genomes, expanding the number of known promoters by five- to ten-fold," Professor Hume said.

The findings of the consortium have also upended the traditional view that each gene has a single promoter and a single starting position.

The team found that, while genes that are only turned on in a specific tissue or at a specific point in time use the traditional model of a single start site, genes used in many tissues have a broad distribution of start sites.

This new model may help explain why some organisms, such as humans, are much more complex than simple organisms such as worms, despite having a similar number of genes.

If some genes have a broad range of start sites, individual species can differ subtly in the way they control these genes, meaning the genes can evolve faster, and organisms with these genes can become more complex.

The consortium also found that many pseudogenes - traditionally thought to be "fossils" of ancient genes - are actually active, and are therefore likely to have some as yet unknown function.

The results obtained by the FANTOM consortium, led by the Japanese scientific institute RIKEN and Genome Network Project, have been published in the current edition of the prestigious journal Nature Genetics in a paper of which Professor Hume is corresponding author and first co-author.
-end-
Professor Hume and several other senior IMB staff are also major contributors to a series of 12 satellite papers in PLoS Genetics, as well as recent papers in PLoS Computational Biology, Genome Biology, and Genomics, that have arisen from this landmark effort in mammalian genomics. Media: Professor David Hume (+61 733 462 073) or Bronwyn Allan, IMB Communications (+61 733 462 134 or +61 418 575 247)

Research Australia

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.