DARPA grant supports research toward realizing tissue regeneration

May 02, 2006

PITTSBURGH, May 2 - While U.S. soldiers fighting in Iraq and Afghanistan are surviving injuries that in previous conflicts likely would have been fatal, the number of wounded with major tissue loss has never before been so high. Such injuries - the partial or complete loss of digits or limbs and deforming facial injuries - have profoundly affected the quality of life of the wounded as well as presented a new set of challenges for the medical community faced with treating them.

Recognizing the need for novel approaches that can restore, even partially, the structure and function of lost or damaged tissues, the Defense Advanced Research Projects Agency (DARPA) has awarded a $3.7 million grant to the University of Pittsburgh's McGowan Institute for Regenerative Medicine to oversee an ambitious, multi-center research program to better understand the intricate processes involved in wound healing and tissue restoration. A large part of the team's effort will involve examining the cellular and molecular systems that allow certain animals to completely regenerate lost tissue. The ultimate goal of the research is to identify ways for enhancing the capacity for wound healing and tissue restoration in humans.

Coordinating the effort is Stephen Badylak, D.V.M., M.D., Ph.D., research professor in the department of surgery at the University of Pittsburgh School of Medicine and Director of the Center for Pre-clinical Tissue Engineering at Pitt's McGowan Institute. In addition to the University of Pittsburgh, five other centers are involved. The investigators from these institutions offer diverse, yet complementary, research interests. They are: "We sincerely believe that the ability to promote tissue restoration in humans is not only possible, it will in fact be a reality some day. By working as a team and capitalizing on our collective expertise and experience, we're in a better position to succeed at unlocking the regenerative potential of mammals than would be possible working in the silos of our individual labs," said Dr. Badylak. The investigators believe their goal is attainable due to a convergence of recent discoveries made in their labs as well as at other institutions in the areas of stem cell research, extracellular matrix biochemistry and the regulation of gene expression.

To some extent, humans already have the capacity for regeneration. For instance, certain cells, such as liver cells and red blood cells, can self-renew; and during embryonic development mammals and birds can regenerate such diverse tissues and structures as their skin and spinal cord. However, humans can't perform the same trick of regrowing a severed limb like salamanders or newts can. That is because in humans the cells that respond to the site of injury form scar tissue, whereas in salamanders the responding cells are genetically programmed to become the cell types of the lost structure, with full limb growth complete by two months.

When a salamander loses a limb, the wound sends out molecular signals that prompt surrounding tissue to begin production of new progenitor cells, also referred to as precursor cells. These progenitor cells continue to divide and form a large pool of cells at the wound site, called a blastema, that will later specialize and mature to help form the bone, muscle, cartilage, nerves and skin of the regenerated limb.

Although most mammals cannot restore tissue efficiently, a certain type of mouse, known as the MRL mouse, has enhanced regenerative capabilities. The MRL mouse can regenerate a portion of the ear as well as its heart tissue following injury.

The researchers aim to prove that mammals can form the required progenitor cells for regeneration just as a salamander does. By studying salamanders and MRL mice, the researchers hope to identify the specific types of cells, molecular signals, genes and cellular scaffolding required for regenerative cell growth. In essence, they seek as comprehensive an understanding as possible of the mechanisms and processes - to obtain the blueprint for regenerative growth.

With such information in hand, the researchers will turn their attention to studies using another mouse model incapable of tissue restoration - a model more representative of mammals, including humans. Specifically, they will attempt to orchestrate the formation of a blastema in response to an injury at the site where nature would normally direct the accumulation of scar tissue.

"If we succeed in being able to produce a regenerative response in a nonregenerative mammal, we will have overcome a major hurdle. Our next step would be to see, if following blastema formation, a functionally normal limb or digit develops. If we can achieve full restoration of function in a mouse or other mammal, it would seem feasible that we would be able to learn from this process and enhance the capacity for more efficient tissue restoration and wound healing in humans," commented Dr. Badylak.

The $3.7 million DARPA grant supports the project for one year. The agency could provide additional funding for up to three more years.
-end-
Note to Editors: Interviews with individual investigators can be arranged by contacting the following press offices. Children's Memorial Research Center
Phil Spina - pspina@childrensmemorial.org (773) 755-6310

University of Massachusetts, Lowell
Sandra Seitz - Sandra_seitz@uml.edu (978) 934-3224

University of Pittsburgh
Lisa Rossi - RossiL@upmc.edu (412) 647-3555

University of Utah
Christopher Nelson - Christopher.nelson@hsc.utah.edu (801) 581-7387

Weill Medical College of Cornell University
Jonathan Weil - jweil@med.cornell.edu (212) 821-0560

Wistar Institute
Franklin Hoke - hoke@wistar.org (215) 898-3716

University of Pittsburgh Medical Center

Related Wound Healing Articles from Brightsurf:

Wound-healing biomaterials activate immune system for stronger skin
Researchers at Duke University and the University of California, Los Angeles, have developed a biomaterial that significantly reduces scar formation after a wound, leading to more effective skin healing.

'What wound did ever heal but by degrees?' delayed wound healing due to gene mutations
Scientists at Fujita Health University, Japan, have discovered how deficiencies of the IL-36Ra protein -- caused by mutations in the IL36RN gene -- delay wound healing via the flooding of the wound with several types of immune cells.

Wound-healing waves
How do cells in our bodies ask for directions? Without any maps to guide them, they still know where to go to heal wounds and renew our bodies.

A new approach to understanding the biology of wound healing
Researchers use discarded wound dressings as a novel and non-invasive way to study the mechanisms that promote healing.

New insights into wound healing
Research from a multidisciplinary team led by Washington University may provide new insights into wound healing, scarring and how cancer spreads

Towards improved wound healing -- Chemical synthesis of a trefoil factor peptide
The family of trefoil factor peptides brings hope to both research and industry to improve the treatment of chronic disorders.

Researchers say genetics may determine wound infection and healing
In a first-of-its-kind study, researchers have determined that genetics may play a role in how wounds heal.

Researchers develop microscopy technique for noninvasive evaluation of wound healing
The GSK Center for Optical Molecular Imaging at the University of Illinois' Beckman Institute has designed a new microscopy technique that can be used to study the progression of wound healing.

How tissues harm themselves during wound healing
Researchers from Osaka University discovered that increased expression of Rbm7 in apoptotic tissue cells results in the recruitment of segregated-nucleus-containing atypical monocytes, leading to tissue fibrosis.

Linking wound healing and cancer risk
When our skin is damaged, a whole set of biological processes springs into action to heal the wound.

Read More: Wound Healing News and Wound Healing Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.