Nav: Home

Black hole caught red-handed in stellar homicide

May 02, 2012

Astronomers have gathered the most direct evidence yet of a supermassive black hole shredding a star that wandered too close.

Supermassive black holes, weighing millions to billions times more than the sun, lurk in the centers of most galaxies. These hefty monsters lay quietly until an unsuspecting victim, such as a star, wanders close enough to get ripped apart by their powerful gravitational clutches.

Astronomers have spotted these stellar homicides before, but this is the first time they can identify the victim. Using a slew of ground- and space-based telescopes, a team of astronomers led by Suvi Gezari of The Johns Hopkins University has identified the victim as a star rich in helium gas. The star resided in a galaxy 2.7 billion light-years away.

Her team's results will appear in the May 3 online edition of the journal Nature.

"When the star is ripped apart by the gravitational forces of the black hole, some part of the star's remains falls into the black hole, while the rest is ejected at high speeds. We are seeing the glow from the stellar gas falling into the black hole over time," said Gezari, an associate research scientist in the Henry A. Rowland Department of Physics and Astronomy at Johns Hopkins' Krieger School of Arts and Sciences. "We're also witnessing the spectral signature of the ejected gas, which we find to be mostly helium. It is like we are gathering evidence from a crime scene.

Because there is very little hydrogen and mostly helium in the gas we detect from the carnage, we know that the slaughtered star had to have been the helium-rich core of a stripped star."

This observation yields insights about the harsh environment around black holes and the types of stars swirling around them.

This is not the first time the unlucky star had a brush with the behemoth black hole. Gezari and her team think the hydrogen-filled envelope surrounding the star's core was lifted off a long time ago by the same black hole. The star may have been near the end of its life. After consuming most of its hydrogen fuel, it had probably ballooned in size, becoming a red giant. The astronomers think the bloated star was looping around the black hole in a highly elliptical orbit, similar to a comet's elongated orbit around the sun. On one of its close approaches, the star was stripped of its puffed-up atmosphere by the black hole's powerful gravity. The stellar remains continued its journey around the center, until it ventured even closer to the black hole to face its ultimate demise and was completely disrupted.

Astronomers have predicted that stripped stars circle the central black hole of our Milky Way galaxy, Gezari pointed out. These close encounters, however, are rare, occurring roughly every 100,000 years. To find this one event, Gezari's team monitored hundreds of thousands of galaxies in ultraviolet light with the Galaxy Evolution Explorer (GALEX), a space-based observatory, and in visible light with the Pan-STARRS1 telescope on Mount Haleakala, Hawaii. Pan-STARRS, short for Panoramic Survey Telescope and Rapid Response System, scans the entire night sky for all kinds of transient phenomena, including supernovae. The team was looking for a bright flare in ultraviolet light from the nucleus of a galaxy with a previously dormant black hole.

In June 2010, they spotted one with both telescopes. Both continued to monitor the flare as it reached peak brightness a month later, and then slowly began to fade over the next 12 months. The brightening event was similar to that of a supernova, but the rise to the peak was much slower, taking nearly one and a half months.

"The longer the event lasted, the more excited we got, since we realized that this is either a very unusual supernova or an entirely different type of event, such as a star being ripped apart by a black hole," said team member Armin Rest of the Space Telescope Science Institute in Baltimore.

By measuring the increase in brightness, the astronomers calculated the black hole's mass at roughly 3 million suns, which equals the weight of our Milky Way's black hole.

Spectroscopic observations with the MMT Observatory on Mount Hopkins in Arizona showed that the black hole was swallowing lots of helium. Spectroscopy divides light into its rainbow colors, which yields an object's characteristics, such as its temperature and gaseous makeup.

"The glowing helium was a tracer for an extraordinarily hot accretion event," Gezari said. "So that set off an alarm for us. And the fact that no hydrogen was found set off a big alarm that this was not typical gas. You can't find gas like that lying around near the center of a galaxy. It's processed gas that has to have come from a stellar core. There's nothing about this event that could be easily explained by any other phenomenon."

The observed speed of the gas also linked the material to a black hole's gravitational pull. MMT measurements revealed that the gas was moving at more than 20 million miles an hour (over 32 million kilometers an hour). However, measurements of the speed of gas in the interstellar medium reveal velocities of only about 224,000 miles an hour (360,000 kilometers an hour).

"The place we also see these kinds of velocities are in supernova explosions," Rest said. "But the fact that it is still shining in ultraviolet light is incompatible with any supernova we know."

To completely rule out the possibility of an active nucleus flaring up in the galaxy, the team used NASA's Chandra X-ray Observatory to study the hot gas. Chandra showed that the characteristics of the gas didn't match those from an active galactic nucleus.

"This is the first time where we have so many pieces of evidence, and now we can put them all together to weigh the perpetrator (the black hole) and determine the identity of the unlucky star that fell victim to it," Gezari said. "These observations also give us clues on what evidence to look for in the future to find this type of event."
-end-
Related links:

More about Gezari: http://www.pha.jhu.edu/~suvi/gezari_suvi.html

The Space Telescope Science Institute: http://www.stsci.edu/portal/

For images, video and more information about this study, visit: http://hubblesite.org/news/2012/18

For graphics and information about the Galaxy Evolution Explorer, visit: http://www.nasa.gov/galex
http://www.galex.caltech.eduMEDIA CONTACTS:

Lisa De Nike, Johns Hopkins
(443)-287-9960 (office) or (443) 845-3148 (cell)
Lde@jhu.edu

Ray Villard, Space Telescope Science Institute
(410) 338-4514
Villard@stsci.edu

Johns Hopkins University

Related Black Hole Articles:

Scientists make waves with black hole research
Scientists at the University of Nottingham have made a significant leap forward in understanding the workings of one of the mysteries of the universe.
Collapsing star gives birth to a black hole
Astronomers have watched as a massive, dying star was likely reborn as a black hole.
When helium behaves like a black hole
A team of scientists has discovered that a law controlling the bizarre behavior of black holes out in space -- is also true for cold helium atoms that can be studied in laboratories.
Star in closest orbit ever seen around black hole
Astronomers have found evidence of a star that whips around a likely black hole twice an hour.
Tail of stray black hole hiding in the Milky Way
By analyzing the gas motion of an extraordinarily fast-moving cosmic cloud in a corner of the Milky Way, Astronomers found hints of a wandering black hole hidden in the cloud.
Hubble gazes into a black hole of puzzling lightness
The beautiful spiral galaxy visible in the center of the image is known as RX J1140.1+0307, a galaxy in the Virgo constellation imaged by the NASA/ESA Hubble Space Telescope, and it presents an interesting puzzle.
Clandestine black hole may represent new population
Astronomers have combined data from NASA's Chandra X-ray Observatory, the Hubble Space Telescope and the National Science Foundation's Karl G.
When will a neutron star collapse to a black hole?
Astrophysicists from Goethe-University Frankfurt have found a simple formula for the maximum mass of a rotating neutron star and hence answered a question that had been open for decades.
Behemoth black hole found in an unlikely place
Astronomers have uncovered a near-record breaking supermassive black hole, weighing 17 billion suns, in an unlikely place: in the center of a galaxy in a sparsely populated area of the universe.
Behemoth black hole found in an unlikely place
Astronomers have uncovered one of the biggest supermassive black holes, with the mass of 17 billion Suns, in an unlikely place: the centre of a galaxy that lies in a quiet backwater of the Universe.

Related Black Hole Reading:

Black Hole (Pantheon Graphic Novels)
by Charles Burns (Author)

Winner of the Eisner, Harvey, and Ignatz Awards

The setting: suburban Seattle, the mid-1970s. We learn from the outset that a strange plague has descended upon the area’s teenagers, transmitted by sexual contact. The disease is manifested in any number of ways — from the hideously grotesque to the subtle (and concealable) — but once you’ve got it, that’s it. There’s no turning back.

As we inhabit the heads of several key characters — some kids who have it, some who don’t, some who are about to get it — what unfolds isn’t the expected battle to fight... View Details


The Little Book of Black Holes (Science Essentials)
by Steven S. Gubser (Author), Frans Pretorius (Author)

Dive into a mind-bending exploration of the physics of black holes

Black holes, predicted by Albert Einstein’s general theory of relativity more than a century ago, have long intrigued scientists and the public with their bizarre and fantastical properties. Although Einstein understood that black holes were mathematical solutions to his equations, he never accepted their physical reality―a viewpoint many shared. This all changed in the 1960s and 1970s, when a deeper conceptual understanding of black holes developed just as new observations revealed the existence of quasars... View Details


A Black Hole Is Not a Hole
by Carolyn Cinami DeCristofano (Author), Michael Carroll (Illustrator)

Get ready to S-T-R-E-T-C-H your mind!

What is a black hole? Where do they come from? How were they discovered? Can we visit one? Carolyn Cinami DeCristofano takes readers on a ride through the galaxies (ours, and others), answering these questions and many more about the phenomenon known as a black hole.

In lively and often humorous text, the book starts off with a thorough explanation of gravity and the role it plays in the formation of black holes. Paintings by Michael Carroll, coupled with real telescopic images, help readers visualize the facts and ideas presented in the... View Details


Black Holes (A True Book)
by Ker Than (Author)

Describes how black holes form, their different sizes, how scientists find black holes in space, and if anything can escape from its gravitational pull. View Details


Black Holes and Time Warps: Einstein's Outrageous Legacy (Commonwealth Fund Book Program)
by Kip S. Thorne (Author), Stephen Hawking (Foreword)

Winner of the 2017 Nobel Prize in Physics

Ever since Albert Einstein's general theory of relativity burst upon the world in 1915 some of the most brilliant minds of our century have sought to decipher the mysteries bequeathed by that theory, a legacy so unthinkable in some respects that even Einstein himself rejected them.

Which of these bizarre phenomena, if any, can really exist in our universe? Black holes, down which anything can fall but from which nothing can return; wormholes, short spacewarps connecting regions of the cosmos; singularities, where... View Details


The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics
by Leonard Susskind (Author)

At the beginning of the 21st century, physics is being driven to very unfamiliar territory--the domain of the incredibly small and the incredibly heavy. The new world is a world in which both quantum mechanics and gravity are equally important. But mysteries remain. One of the biggest involved black holes. Famed physicist Stephen Hawking claimed that anything sucked in a black hole was lost forever. For three decades, Leonard Susskind and Hawking clashed over the answer to this problem. Finally, in 2004, Hawking conceded.

THE BLACK HOLE WAR will explain the mind-blowing science that... View Details


Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved
by Marcia Bartusiak (Author)

The contentious history of the idea of the black hole—the most fascinating and bizarre celestial object in the heavens

For more than half a century, physicists and astronomers engaged in heated dispute over the possibility of black holes in the universe. The weirdly alien notion of a space-time abyss from which nothing escapes—not even light—seemed to confound all logic. This engrossing book tells the story of the fierce black hole debates and the contributions of Einstein and Hawking and other leading thinkers who completely altered our view of the universe.
View Details


A User's Guide to the Universe: Surviving the Perils of Black Holes, Time Paradoxes, and Quantum Uncertainty
by Dave Goldberg (Author), Jeff Blomquist (Author)

NOW AVAILABLE IN PAPERBACK

Answers to science's most enduring questions from ""Can I break the light-speed barrier like on Star Trek?"" and ""Is there life on other planets?"" to ""What is empty space made of?""

This is an indispensable guide to physics that offers readers an overview of the most popular physics topics written in an accessible, irreverent, and engaging manner while still maintaining a tone of wry skepticism. Even the novice will be able to follow along, as the topics are addressed using plain English and (almost) no equations. Veterans of popular... View Details


My Heart and Other Black Holes
by Jasmine Warga (Author)

A stunning novel about the transformative power of love, perfect for fans of 13 Reasons Why by Jay Asher.

Sixteen-year-old physics nerd Aysel is obsessed with plotting her own death. With a mother who can barely look at her without wincing, classmates who whisper behind her back, and a father whose violent crime rocked her small town, Aysel is ready to turn her potential energy into nothingness.

There’s only one problem: she’s not sure she has the courage to do it alone. But once she discovers a website with a section called Suicide Partners,... View Details


Death by Black Hole: And Other Cosmic Quandaries
by Neil deGrasse Tyson (Author)

“[Tyson] tackles a great range of subjects . . . with great humor, humility, and―most important― humanity.” ―Entertainment Weekly

Loyal readers of the monthly "Universe" essays in Natural History magazine have long recognized Neil deGrasse Tyson's talent for guiding them through the mysteries of the cosmos with clarity and enthusiasm. Bringing together more than forty of Tyson's favorite essays, ?Death by Black Hole? explores a myriad of cosmic topics, from what it would be like to be inside a black hole to the movie industry's... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Simple Solutions
Sometimes, the best solutions to complex problems are simple. But simple doesn't always mean easy. This hour, TED speakers describe the innovation and hard work that goes into achieving simplicity. Guests include designer Mileha Soneji, chef Sam Kass, sleep researcher Wendy Troxel, public health advocate Myriam Sidibe, and engineer Amos Winter.
Now Playing: Science for the People

#448 Pavlov (Rebroadcast)
This week, we're learning about the life and work of a groundbreaking physiologist whose work on learning and instinct is familiar worldwide, and almost universally misunderstood. We'll spend the hour with Daniel Todes, Ph.D, Professor of History of Medicine at The Johns Hopkins University, discussing his book "Ivan Pavlov: A Russian Life in Science."