How much does groundwater contribute to sea level rise?

May 02, 2016

Groundwater extraction and other land water contribute about three times less to sea level rise than previous estimates, according to a new study published in the journal Nature Climate Change. The study does not change the overall picture of future sea level rise, but provides a much more accurate understanding of the interactions between water on land, in the atmosphere, and the oceans, which could help to improve future models of sea level rise.

"Projecting accurate sea level rise is important, because rising sea level is a threat to people who live near the ocean and in small islands," explains IIASA researcher Yoshihide Wada, who led the study. "Some low-lying areas will have more frequent flooding, and very low-lying land could be submerged completely. This could also damage substantially coastal infrastructure."

Sea level has risen 1.7 mm per year over the 20th and the early 21st century, a trend that is expected to continue as climate change further warms the planet. Researchers have attributed the rising seas to a combination of factors including melting ice caps and glaciers, thermal expansion (water expands as it gets warmer), and the extraction of groundwater for human use.

Land water contributions are small in comparison to the contribution of ice melt and thermal expansion, yet they have been increasing, leading to concerns that this could exacerbate the problem of sea level rise caused by climate change.

However, much uncertainty remains about how much different sources contribute to sea level rise. In fact, sea level has actually risen more than researchers could account for from the known sources, leading to a gap between observed and modeled global sea-level budget.

Previous studies, including estimates used in the IPCC Fifth Assessment Report, had assumed that nearly 100% of extracted groundwater ended up in the ocean. The new study improves on previous estimates by accounting for feedbacks between the land, ocean, and atmosphere. It finds that number is closer to 80%. That means that the gap between modeled and observed sea level rise is even wider, suggesting that other processes are contributing more water than previously estimated.

"During the 20th century and early 21st century, cumulative groundwater contribution to global sea level was overestimated by at least 10 mm," says Wada. In fact, the new study shows that from 1971 to 2010, the contribution of land water to global sea level rise was actually slightly negative - meaning that more water was stored in groundwater and also due to reservoir impoundment behind dams. From 1993 to 2010, the study estimates terrestrial water as contributing positive 0.12 mm per year to sea level rise.

The study does not change the fact that future groundwater contribution to sea level will increase as groundwater extraction increases. And the increasing trend in groundwater depletion has impacts beyond sea level rise. Wada explains, "The water stored in the ground can be compared to money in the bank. If you withdraw money at a faster rate than you deposit it, you will eventually start having account-supply problems. If we use groundwater unsustainably, in the future there might not be enough groundwater to use for food production. Groundwater depletion can also cause severe environmental problems like reduction of water in streams and lakes, deterioration of water quality, increased pumping costs, and land subsidence."
-end-
Reference

Wada Y, Lo MH, Yeh PJF, Reager JT, Famiglietti JS, Wu RJ, Tseng YH (2016). Fate of water pumped from underground and contributions to sea-level rise. Nature Climate Change. doi:10.1038/NCLIMATE3001

About IIASA:


The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policymakers to shape the future of our changing world. IIASA is independent and funded by prestigious research funding agencies in Africa, the Americas, Asia, Europe, and Oceania. http://www.iiasa.ac.at

International Institute for Applied Systems Analysis

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.