Nav: Home

Domino effect in pharmaceutical synthesis

May 02, 2017

Chemists at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) headed by Prof. Dr. Svetlana B. Tsogoeva at the Chair of Organic Chemistry I have made research into pharmaceutical ingredient synthesis more efficient, more sustainable and more environmentally friendly. They have developed a novel synthetic route towards antiviral quinazoline heterocycles that have not been described previously in professional literature.

Heterocycles, ring shaped molecules which contain at least one heteroatom (such as nitrogen, oxygen, sulphur) play a central role in drug development research. They are contained in the vast majority of all pharmaceutics on the market. Quinazoline is a heterocycle and is, for example, a subunit of many anti-cancer drugs. Up to now, the synthesis of quinazoline heterocycles was very costly and required many individual steps starting with expensive compounds and reagents. In addition, fluorescence markers had to be linked to a drug to make its uptake into a cell visible.

The chemists at FAU have now developed a highly efficient method using metal-free domino processes. This simplifies the synthesis of the pharmaceutical ingredient and makes it more sustainable and economical. In so-called domino reactions, all of the required simple initial compounds and a solvent are mixed in one flask, in which multiple reaction steps take place without the addition of further reagents. Within a domino reaction one transformation triggers the next, similar to a row of dominoes where one tile hits the next. This synthesis makes isolation and purification of the intermediate products superfluous.

The FAU chemists have now combined three such metal-free multi-step domino reactions for the first time, and have run them in the same reaction flask. Lab work time, costs, waste, and the environmental footprint can be reduced using this combination in a 'one-pot' synthesis. This novel one-pot domino process creates a completely new type of quinazolines, which have intrinsic fluorescence properties. This means an extra fluorescence marker to make the substance visible is no longer necessary.

In addition, the novel quinazolines have shown that they are highly effective against herpes viruses, and in contrast to many other bioactive compounds, do not damage healthy cells. This reduces possible side effects and increases the therapeutic range.
-end-


University of Erlangen-Nuremberg

Related Environmentally Friendly Articles:

Green chemistry of fullerene: Scientists invented an environmentally friendly way to realize organic
Scientists from the Skoltech Center for Energy Science and Technology (CEST) and the Institute for Problems of Chemical Physics of Russian Academy of Sciences have developed a novel approach for preparing thin semiconductor fullerene films.
Environmentally friendly shipping helps to reduce freight costs
The shipping sector has potential to gain profit by reducing carbon dioxide emissions.
The majority consider themselves more environmentally friendly than others
Research from the University of Gothenburg shows that we tend to overestimate our personal environmental engagement.
Scientists have developed environmentally friendly way to build up road foundations
Scientists of Far Eastern Federal University (FEFU) and the Federal University of Technology -- Paraná/Brazil together with colleagues from Kazakhstan have proposed to build road foundations from a mixture of loam, metal slag and lime waste instead of traditional layers of natural sand and gravel.
A new concept could make more environmentally friendly batteries possible
A new concept for an aluminium battery has twice the energy density as previous versions, is made of abundant materials, and could lead to reduced production costs and environmental impact.
How NASA is becoming more business friendly
A new case study demonstrates the steps being taken by the US National Aeronautics and Space Agency (NASA) to make it easier for small businesses and entrepreneurs to understand its needs and do business with it.
Scientists propose environmentally friendly control practices for harmful tomato disease
Tomato yellow leaf curl disease (TYLCD) is the most destructive disease of tomato, causing severe damage to crops worldwide and resulting in high economic losses.
Environmentally friendly control of common disease infecting fish and amphibians
Aquatic organisms in marine systems and freshwaters are threatened by fungal and fungal-like diseases globally.
Botox cousin can reduce malaria in an environmentally friendly way
Researchers at the universities in Stockholm and Lund, in collaboration with researchers from the University of California, have found a new toxin that selectively targets mosquitos.
Researchers develop viable, environmentally-friendly alternative to Styrofoam
Washington State University researchers have developed an environmentally-friendly, plant-based material that for the first time works better than Styrofoam for insulation.
More Environmentally Friendly News and Environmentally Friendly Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.