Nav: Home

Penn study finds linkage between social network structure and brain activity

May 02, 2017

When someone talks about using "your network" to find a job or answer a question, most people understand that to mean the interconnected web of your friends, family, and acquaintances. But we all have another key network that shapes our life in powerful ways: our brains.

In the brain, impulses whiz from one brain region to another, helping you formulate all of your thoughts and decisions. As science continues to unlock the complexities of the brain, a group of researchers has found evidence that brain networks and social networks actually influence and inform one another.

The study, published today in the Proceedings of the National Academy of Sciences (PNAS) looked at the brain's response to social exclusion under fMRI, particularly in the mentalizing system, which includes separate regions of the brain that help us consider the views of others.

It found that people who show greater changes in connectivity in their mentalizing system during social exclusion compared to inclusion tend to have a less tightly knit social network -- that is, their friends tend not to be friends with one another. By contrast, people with more close-knit social networks, in which many people in the network tend to know one another, showed less change in connectivity in their mentalizing regions.

"The significance of what we found is that people who are surrounded by different types of social networks use their brains differently," says senior author Emily Falk, Ph.D., Associate Professor of Communication, Psychology, and Marketing at the University of Pennsylvania's Annenberg School for Communication and director of its Communication Neuroscience Lab. "In particular, we find that those who have a less densely connected social network show more dynamic responses in the mentalizing system. This might indicate that they are thinking differently about how to navigate their social relationships under different circumstances."

To create the feeling of social exclusion, the researchers used a virtual ball-tossing game called Cyberball with 80 boys ages 16-17. While in the fMRI machine, each participant saw a screen with two other cartoon players -- who they believed to be controlled by real people -- and a hand to represent themselves. All three participants in the game take turns tossing a virtual ball to one another.

For the first phase of the game, the virtual players include the test subject, tossing him the ball frequently. The game then shifts to exclusion mode, and the virtual players stop throwing the ball to the participant.

"It's surprising how strong the effect is on participants," says lead author Ralf Schmälzle, Ph.D., Assistant Professor at Michigan State University, who notes that adolescents are particularly sensitive to social rank. "They have to think through, 'What is going on? Did I do something wrong?' Although Cyberball may sound like an artificial task, it is actually quite involving for people. That makes it a good task to study the brain effects of social exclusion in a controlled but powerful way."

The data allowed the researchers to look at the activity among different brain regions comprising the mentalizing system. Unlike past neuroimaging studies of exclusion, they were not looking for average activity levels, but rather the relationship among their activity over time.

"These regions are in different places in the brain, but they show a similar response during exclusion," says Schmälzle. "They go up and down and up and down, almost as if they're dancing together, doing the same moves over time, and this 'coupling' of their activity increases during social exclusion."

The researchers also were able to access, with permission, the test subjects' Facebook data, giving them a snapshot of their friendship networks.

In "dense" networks, close-knit friend groupings mean that many of a person's friends are also friends with each other. Talk to one friend, and another is likely to hear the story. In "Sparse" networks, a person's friends tend to be more far-flung, not knowing one another. If you talk to friend A, you would not expect friend B to know.

The test subjects who showed the greatest brain connectivity during social exclusion were those in sparse networks.

While the study cannot pinpoint why this is the case, the authors see possible explanations.

"One possibility is that if not all your friends know each other, you need to more dynamically use your mentalizing system in a day-to-day context," says Falk. "People with a greater diversity of friends may need to scroll through different interpretations of what's going on."

On the other hand, Schmälzle says, it also would seem possible that people with different inclinations to think about social situations like exclusion in a particular way, might feel more confident in specific types of networks and thus tend to set up their social networks accordingly.

"The study of brain and social network dynamics together is extremely new," says Danielle Bassett, Ph.D., a co-author on the study and a Penn Associate Professor of Bioengineering. But, she notes, it holds great promise for understanding more accurately how the brain handles complex tasks like learning a new skill or picking up on and responding to social cues.

"Social network analysis and thinking about social networks has been around a long time in Sociology," says Falk, "but it's only recently that these kind of quantitative measures of social networks have been combined with an understanding of the brain. How do your brain dynamics affect your social network and how does your social network affect your brain? We're at the very tip of the iceberg right now."

"A longstanding feature of neuroscience research has been to ask participants to sit in an isolated room or scanner and make decisions about stimuli," says co-author Jean Vettel, Ph.D., of the U.S. Army Research Laboratory and visiting fellow at Penn, "but this research highlights the critical need to understand social influence and context if we truly want to understand how a person will respond and reason about the world."
-end-
In addition to Schmälzle, Falk, Bassett, and Vettel, authors on "Brain connectivity dynamics during social interaction reflect social network structure" include Matthew Brook O'Donnell, Ph.D. (University of Pennsylvania); Javier O. Garcia, Ph.D. (U.S. Army Research Lab); Christopher N. Cascio (University of Pennsylvania); and Joseph Bayer, Ph.D. (The Ohio State University).

University of Pennsylvania

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".