Nav: Home

Hubble detects helium in the atmosphere of an exoplanet for the first time

May 02, 2018

Astronomers using the NASA/ESA Hubble Space Telescope have detected helium in the atmosphere of the exoplanet WASP-107b. This is the first time this element has been detected in the atmosphere of a planet outside the Solar System. The discovery demonstrates the ability to use infrared spectra to study exoplanet extended atmospheres.

The international team of astronomers, led by Jessica Spake, a PhD student at the University of Exeter in the UK, used Hubble's Wide Field Camera 3 to discover helium in the atmosphere of the exoplanet WASP-107b This is the first detection of its kind.

Spake explains the importance of the discovery: "Helium is the second-most common element in the Universe after hydrogen. It is also one of the main constituents of the planets Jupiter and Saturn in our Solar System. However, up until now helium had not been detected on exoplanets - despite searches for it."

The team made the detection by analysing the infrared spectrum of the atmosphere of WASP-107b. Previous detections of extended exoplanet atmospheres have been made by studying the spectrum at ultraviolet and optical wavelengths; this detection therefore demonstrates that exoplanet atmospheres can also be studied at longer wavelengths.

"The strong signal from helium we measured demonstrates a new technique to study upper layers of exoplanet atmospheres in a wider range of planets," says Spake "Current methods, which use ultraviolet light, are limited to the closest exoplanets. We know there is helium in the Earth's upper atmosphere and this new technique may help us to detect atmospheres around Earth-sized exoplanets - which is very difficult with current technology."

WASP-107b is one of the lowest density planets known: While the planet is about the same size as Jupiter, it has only 12% of Jupiter's mass. The exoplanet is about 200 light-years from Earth and takes less than six days to orbit its host star.

The amount of helium detected in the atmosphere of WASP-107b is so large that its upper atmosphere must extend tens of thousands of kilometres out into space. This also makes it the first time that an extended atmosphere has been discovered at infrared wavelengths.

Since its atmosphere is so extended, the planet is losing a significant amount of its atmospheric gases into space -- between ~0.1-4% of its atmosphere's total mass every billion years [2].

As far back as the year 2000, it was predicted that helium would be one of the most readily-detectable gases on giant exoplanets, but until now, searches were unsuccessful.

David Sing, co-author of the study also from the University of Exeter, concludes: "Our new method, along with future telescopes such as the NASA/ESA/CSA James Webb Space Telescope/, will allow us to analyse atmospheres of exoplanets in far greater detail than ever before."

[1] The measurement of an exoplanet's atmosphere is performed when the planet passes in front of its host star. A tiny portion of the star's light passes through the exoplanet's atmosphere, leaving detectable fingerprints in the spectrum of the star. The larger the amount of an element present in the atmosphere, the easier the detection becomes.

[2] Stellar radiation has a significant effect on the rate at which a planet's atmosphere escapes. The star WASP-107 is highly active, supporting the atmospheric loss. As the atmosphere absorbs radiation it heats up, so the gas rapidly expands and escapes more quickly into space.

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The study was published in the paper "Helium in the eroding atmosphere of an exoplanet", published in Nature.

The international team of astronomers in this study consists of J. J. Spake (University of Exeter, UK), D. K. Sing (University of Exeter, UK; Johns Hopkins University, USA), T. M. Evans (University of Exeter, UK), A. Oklopči? (Harvard-Smithsonian Center for Astrophysics, USA), V. Bourrier (Observatoire de l'Université de Genève, Switzerland), L. Kreidberg (Harvard Society of Fellows, USA; Harvard-Smithsonian Center for Astrophysics, USA), B. V. Rackham (University of Arizona, USA), J. Irwin (Harvard-Smithsonian Center for Astrophysics, USA), D. Ehrenreich (Observatoire de l'Université de Genève, Switzerland), A. Wyttenbach (Observatoire de l'Université de Genève, Switzerland), H. R. Wakeford (Space Telescope Science Institute, USA), Y. Zhou (University of Arizona, USA), K. L. Chubb (University College London, UK), N. Nikolov (University of Exeter, UK), J. Goyal (University of Exeter, UK), G. W. Henry (Tennessee State University, USA), M. H. Williamson (Tennessee State University, USA), S. Blumenthal (Space Telescope Science Institute, USA), D. Anderson (Keele University, UK), C. Hellier (Keele University, UK), D. Charbonneau (Harvard-Smithsonian Center for Astrophysics, USA), S. Udry (Observatoire de l'Université de Genève, Switzerland), and N. Madhusudhan (University of Cambridge, UK)

Image credit: NASA, ESA


* Images of Hubble - -


Jessica Spake
University of Exeter
Exeter, UK

David Sing
University of Exeter
Exeter, UK
Tel: +44 1392725652

Mathias Jaeger
ESA/Hubble, Public Information Officer
Garching, Germany
Tel: +49 176 62397500

ESA/Hubble Information Centre

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Planet Nine could spell doom for solar system
The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.
Theft behind Planet 9 in our solar system
Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet.
Studying the solar system with NASA's Webb Telescope
NASA's James Webb Space Telescope will look across vast distances to find the earliest stars and galaxies and study the atmospheres of mysterious worlds orbiting other stars.
'This solar system isn't big enough for the both of us.' -- Jupiter
It's like something out of an interplanetary chess game. Astrophysicists at the University of Toronto have found that a close encounter with Jupiter about four billion years ago may have resulted in another planet's ejection from the Solar System altogether.
IBEX sheds new light on solar system boundary
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA's Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.

Related Solar System Reading:

Hello, World! Solar System
by Jill McDonald (Author)

National Geographic Little Kids First Big Book of Space (National Geographic Little Kids First Big Books)
by Catherine D. Hughes (Author), David A. Aguilar (Illustrator)

There's No Place Like Space: All About Our Solar System (Cat in the Hat's Learning Library)
by Tish Rabe (Author), Aristides Ruiz (Illustrator)

Solar System Reference Poster
by Kappa Map (Author)

Solar System Scratch and Sketch: An Activity Book For Inquisitive Artists and Astronauts of All Ages
by Heather Zschock (Author)

Space Encyclopedia: A Tour of Our Solar System and Beyond (National Geographic Kids)
by David A. Aguilar (Author), David A. Aguilar (Illustrator)

Solar System: A Visual Exploration of the Planets, Moons, and Other Heavenly Bodies that Orbit Our Sun
by Marcus Chown (Author)

Our Solar System (Science for Toddlers)
by American Museum of Natural History (Author), Connie Roop (Author), Peter Roop (Author)

13 Planets: The Latest View of the Solar System (National Geographic Kids)
by David A. Aguilar (Author)

Simon and the Solar System
by Derek Taylor Kent (Author), Mary Gutfleisch (Illustrator)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Story Behind The Numbers
Is life today better than ever before? Does the data bear that out? This hour, TED speakers explore the stories we tell with numbers — and whether those stories portray the full picture. Guests include psychologist Steven Pinker, economists Tyler Cowen and Michael Green, journalist Hanna Rosin, and environmental activist Paul Gilding.
Now Playing: Science for the People

#487 Knitting in PEARL
This week we're discussing math and things made from yarn. We welcome mathematician Daina Taimina to the show to discuss her book "Crocheting Adventures with Hyperbolic Planes: Tactile Mathematics, Art and Craft for all to Explore", and how making geometric models that people can play with helps teach math. And we speak with research scientist Janelle Shane about her hobby of training neural networks to do things like name colours, come up with Halloween costume ideas, and generate knitting patterns: often with hilarious results. Related links: Crocheting the Hyperbolic Plane by Daina Taimina and David Henderson Daina's Hyperbolic Crochet blog...