Nav: Home

Helium detected in exoplanet atmosphere for the first time

May 02, 2018

Astronomers have detected helium in the atmosphere of a planet that orbits a star far beyond our solar system for the very first time.

An international team of researchers, led by Jessica Spake from the University of Exeter, discovered evidence of the inert gas on 'super-Neptune' exoplanet WASP-107b, found 200 light years from Earth and in the constellation of Virgo.

The pivotal breakthrough, made from observations of the exoplanet using the Hubble Space Telescope, revealed an abundance of helium in the upper atmosphere of the exoplanet, which was only discovered in 2017.

The strength of the helium signal detected was so large that scientists believe the planet's upper atmosphere extends tens of thousands of kilometres into space.

Helium is the second most common element in the universe and it has long-since been predicted to be one of the most readily-detectable gases on giant exoplanets. However, this pioneering new research is the first time that the gas has been successfully found.

Now, the research team believe that the ground-breaking study could pave the way for scientists to discover more atmospheres around Earth-sized exoplanets across the galaxy.

The research is published in the leading scientific journal, Nature, on May 3, 2018.

Jessica Spake, part of Exeter's Physics and Astronomy department said: "We hope to use this technique with the upcoming James Webb Space Telescope, for example, to learn what kind of planets have large envelopes of hydrogen and helium, and how long planets can hold on to their atmospheres. By measuring infrared light, we can see further out into space than if we were using ultraviolet light."

WASP-107b is a very low-density planet similar in size to Jupiter, but with only 12 per cent of its mass. Orbiting its host star every six days, it has one of the coolest atmospheres of any of the exoplanets discovered, although at 500 C is still radically hotter that Earth.

By analysing the spectrum of light passing through the upper part of the exoplanet's atmosphere, the researchers were able to detect the presence of helium in an excited state.

The significant strength of the signal measured exploited a new technique that doesn't rely on ultraviolet measurements which have historically been used to study upper exoplanet atmospheres. The team believe this new technique, which uses infrared light, could open up new paths to exploring the atmospheres of more Earth-sized exoplanets found in the further reaches of the universe.

Tom Evans, a co-author also from the University of Exeter added: "The helium we detected extends far out to space as a tenuous cloud surrounding the planet. If smaller, Earth-sized planets have similar helium clouds, this new technique offers an exciting means to study their upper atmospheres in the very near future.."

Helium was first detected as an unknown yellow spectral line signature in sunlight in 1868. Devon-based astronomer Norman Lockyer was the first to propose this line was due to a new element, and named it after the Greek Titan of the Sun, Helios.

It has since been discovered to be one of the main constituents of the planets Jupiter and Saturn in our Solar System.
-end-


University of Exeter

Related Solar System Articles:

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.
What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.
What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.
Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.
Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.
First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.
A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.
Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.
Does the organic material of comets predate our solar system?
The Rosetta space probe discovered a large amount of organic material in the nucleus of comet 'Chury.' In an article published by MNRAS on Aug.
Tracking a solar eruption through the solar system
Ten spacecraft, from ESA's Venus Express to NASA's Voyager-2, felt the effect of a solar eruption as it washed through the solar system while three other satellites watched, providing a unique perspective on this space weather event.
More Solar System News and Solar System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.