Nav: Home

Spider venom is a dangerous cocktail

May 02, 2019

Over the past decades, the research of spider venom mainly focused on the neurotoxins it contains. This involved understanding the paralyzing and toxic effect of individual components of the venom on arthropods and vertebrates. Researchers spread all over the world were successful in identifying neurotoxins and their effects. These findings were intended to be used for combating diseases of the nervous system. So far, the development of new insecticides has been particularly successful. However, the great complexity of spider venoms, which goes far beyond the pure neurotoxins, has long been disregarded. Under the direction of Lucia Kuhn-Nentwig and Wolfgang Nentwig, researchers of the Institute of Ecology and Evolution (IEE) of the University of Bern recently published an article in the journal Toxins that gives an overview of many years of research on various components of spider venom. The study shows that spider venom causes manifold interactions in the spiders' preys.

A combined offensive

Researchers of the IEE examine the spider venom in the laboratory using the example of the venom of the wandering spider Cupiennius salei. These spiders from Central America have a legspan of approx. ten centimeters and do not produce a web for trapping prey. Researchers use the term dual prey-inactivation strategy for describing the complex effect mechanism of the venom. This strategy contains a specific, neurotoxic part as well as a nonspecific, metabolic part. "Both parts of the strategy interact very closely. The venom targets not only the muscles and the nervous system of the prey; the internal homeostasis, the physiological balance of an organism, is also disrupted by the blockade of ion channels and various metabolic pathways," Lucia Kuhn-Nentwig explains.

Optimally coordinated

There are multiple synergistic interactions between the components of the venom. The toxic components, for example, attack the muscles and the nervous system which leads to cramps and paralysis. Furthermore, the internal tissue of the prey is destroyed which facilitates the spread of the venom and causes pain and inflammation over the long term. On the other hand, other components affect the energy balance and increase blood sugar, which considerably disturbs the prey's bodily functions. In terms of effect, the main components of the venom are efficiently linked with each other as well as with various metabolic pathways. "This dual prey-inactivation strategy is very effective and reduces the risk of the spider losing the prey as well as the risk of potential prey developing a resistance to spider venom in the long run," Lucia Kuhn-Nentwig says.

"An entire armada of substances"

In order to better understand spider venom, the scientist and her colleagues investigated all RNA molecules produced in the venom glands (the so-called transcriptome). The identification of ?-amylase as the main protein in spider venom was a key moment for the researchers. "Based on this, we were in a position to understand the existence of many other peptides and proteins contributing to the toxic effect of spider venom," Kuhn-Nentwig explains.

Even though this principle of the effect of spider venom was developed on one species (Cupiennius salei), it can be generalized for most other species of spiders. Kuhn-Nentwig summarizes: "Spider venom is more than just a toxin - it is an entire armada of substances that attack, paralyze and kill an organism in a maximum of many different ways."

University of Bern

Related Nervous System Articles:

Fewer scars in the central nervous system
Researchers have discovered the influence of the coagulation factor fibrinogen on the damaged brain.
Polymerized estrogen shown to protect nervous system cells
In research published today in Nature Communications, an interdisciplinary team from Rensselaer Polytechnic Institute demonstrated how estrogen -- a natural hormone produced in the body -- can be polymerized into a slow-releasing biomaterial and applied to nervous system cells to protect those cells and even promote regeneration.
Discovery concerning the nervous system overturns a previous theory
It appears that when our nervous system is developing, only the most viable neurons survive, while immature neurons are weeded out and die.
Autonomic nervous system appears to function well regardless of mode of childbirth
'In a low-risk group of babies born full-term, the autonomic nervous system and cortical systems appear to function well regardless of whether infants were exposed to labor prior to birth,' says Sarah B.
First step to induce self-repair in the central nervous system
Injured axons instruct Schwann cells to build specialized actin spheres to break down and remove axon fragments, thereby starting the regeneration process.
First complete wiring diagram of an animal's nervous system
In a study published online today in Nature, researchers at Albert Einstein College of Medicine describe the first complete wiring diagram of the nervous system of an animal, the roundworm Caenorhabditis elegans, used by scientists worldwide as a model organism.
Scientists unlock new role for nervous system in regeneration
Biologists have developed a computational model of flatworm regeneration to answer an important question in regeneration research - what are the signals that determine the rebuilding of specific anatomical structures?
Research gives new insight into the evolution of the nervous system
Pioneering research has given a fascinating fresh insight into how animal nervous systems evolved from simple structures to become the complex network transmitting signals between different parts of the body.
Researchers solve mystery of how ALL enters the central nervous system
A research team led by Duke Cancer Institute scientists has found that this blood cancer infiltrates the central nervous system not by breaching the blood-brain barrier, but by evading the barrier altogether.
The VIPs of the nervous system
Biologists at Washington University in St Louis unlocked a cure for jet lag in mice by activating a small subset of the neurons involved in setting daily rhythms.
More Nervous System News and Nervous System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at