Specialized plant cells regain stem-cell features to heal wounds

May 02, 2019

If plants are injured, cells adjacent to the wound fill the gaps with their daughter cells. However, which cells divide to do the healing and how they manage to produce cells that match the cell type of the missing tissue has been unclear. Scientists from the Institute of Science and Technology Austria (IST Austria) have now shown that to correctly replace dead cells, neighbors to the inside of the wound re-activate their stem cell programs.

All plant organs--from the leaves to the root--regularly endure injuries to their tissue, be it due to mechanical forces, grazing animals, or other factors. While animals rely on specialized migrating cells for wound healing, plants, whose cells are immobile, had to evolve other mechanisms: It has been known for almost a century that in plants, cells adjacent to the wound replace harmed tissue with new daughter cells. Yet, a completely new aspect of plant wound healing in the sensitive root tip has only been discovered now: The research team around first authors Petra Marhava, former PhD student at IST Austria, current PhD student Lukas Hörmayer, and former IST postdoc Saiko Yoshida--all three of them in the group of Ji?í Friml--has found out that injured or destroyed root cells are not simply replaced by a proliferation of healthy cells from the same cell type above and below to the wound. Instead, specifically the cells adjacent to the inner side of the injury reactivate their stem cell programs to produce de novo cells of the correct type to replace missing neighbors. The researchers termed this newly discovered process "restorative patterning", involving "restorative cell division".

The missing neighbor: Tissue gaps activate division of "healing cells" in adjacent tissue

With a UV laser, Marhava et al. removed individual cells or small cell groups in the root tip of the model plant Arabidopsis thaliana. Live imaging via the innovative vertical stage microscope--developed in a previous project at IST Austria--allowed them to track the wound healing process in vivo. Restorative patterning could be observed in various specified tissue layers: epidermis, cortex, endodermis, and in innermost pericycle cells encircling the vascular tissue. In all tissue layers, the restorative patterning started with the division of the inner adjacent cells in response to a damaged or missing neighbor cell. However, compared to regular proliferative divisions, the cell cycle of these "healing cells" happened significantly faster and included a shift of division planes by 90 degrees, allowing the cells to arrange perpendicular to the root axis (for the root to grow in length, root tip cells usually arrange parallel to the root axis).

Identity switch: Daughter cell of different type than mother cell

After cell division was complete, genetic marking showed that the resulting cell types matched those of the missing cells. For example, if a missing cortex cell was to be replaced by a newly generated daughter cell from an adjacent endodermis cell, this daughter cell acquired the new and "correct" cell type of a cortex cell. Thus, activated "healing cells" are able to divide asymmetrically, i.e. they generate daughter cells of a different type than the mother cell--a process that typically only occurs in the root's stem cell niche, the region where stem cells emanate from.

The roots of curiosity: Next generation scientist is looking closely at plant growth processes

How a stem cell program--i.e. transcription factors and the corresponding genes guiding restorative cell division including the switch of the division plane orientation--in an already specialized cell is activated, remains unknown. However, for Lukas Hörmayer, this study is only the beginning--not only as this paper is his first publication during his PhD program at IST Austria: "We are convinced that in further studies, molecular genetics, among other methods, will reveal not only a broader understanding of the underlying mechanisms of plant wound healing, but also, how plants establish and maintain their body patterns." Having grown up on a winery in Lower Austria, plants have always fascinated the young scientist: "This is a look far into the future, but the mere thought of what other discoveries beyond present knowledge my plant root research may bring about, drives my curiosity," Hörmayer concludes.
The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° 742985, Marie Curie Fellowship (contract 753138) and from the Federation of European Biochemical Societies (FEBS) Long-Term Fellowship.

Institute of Science and Technology Austria

Related Cell Division Articles from Brightsurf:

Cell division: Cleaning the nucleus without detergents
A team of researchers, spearheaded by the Gerlich lab at IMBA, has uncovered how cells remove unwanted components from the nucleus following mitosis.

Genetic signature boosts protein production during cell division
A research team has uncovered a genetic signature that enables cells to adapt their protein production according to their state.

Inner 'clockwork' sets the time for cell division in bacteria
Researchers at the Biozentrum of the University of Basel have discovered a 'clockwork' mechanism that controls cell division in bacteria.

Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.

Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.

Seeing is believing: Monitoring real time changes during cell division
Scientist have cast new light on the behaviour of tiny hair-like structures called cilia found on almost every cell in the body.

Read More: Cell Division News and Cell Division Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.