Nav: Home

These trippy images were designed by AI to super-stimulate monkey neurons

May 02, 2019

To find out which sights specific neurons in monkeys "like" best, researchers designed an algorithm, called XDREAM, that generated images that made neurons fire more than any natural images the researchers tested. As the images evolved, they started to look like distorted versions of real-world stimuli. The work appears May 2 in the journal Cell.

"When given this tool, cells began to increase their firing rate beyond levels we have seen before, even with normal images pre-selected to elicit the highest firing rates," explains co-first author Carlos Ponce, then a post-doctoral fellow in the laboratory of senior author Margaret Livingstone at Harvard Medical School and now a faculty member at Washington University in St. Louis.

"What started to emerge during each experiment were pictures that were reminiscent of shapes in the world but were not actual objects in the world," he says. "We were seeing something that was more like the language cells use with each other."

Researchers have known that neurons in the visual cortex of primate brains respond to complex images, like faces, and that most neurons are quite selective in their image preference. Earlier studies on neuronal preference used many natural images to see which images caused neurons to fire most. However, this approach is limited by the fact that one cannot present all possible images to understand what exactly will best stimulate the cell.

The XDREAM algorithm uses the firing rate of a neuron to guide the evolution of a novel, synthetic image. It goes through a series of images over the course of minutes, mutates them, combines them, and then shows a new series of images. At first, the images looked like noise, but gradually they changed into shapes that resembled faces or something recognizable in the animal's environment, like the food hopper in the animals' room or familiar people wearing surgical scrubs. The algorithm was developed by Will Xiao in the laboratory of Gabriel Kreiman at Children's Hospital and tested on real neurons at Harvard Medical School.

"The big advantage of this approach is that it allows the neuron to build its own preferred images from scratch, using a tool that is not limited by much, that can create anything in the world or even things that don't exist in the world," says Ponce.

"In this way we have evolved a super-stimulus that drives the cell better than any natural stimulus we could guess at," says Livingstone. "This approach allows you to use artificial intelligence to figure out what triggers neurons best. It's a totally unbiased way of asking the cell what it really wants, what would make it fire the most."

From this study, the researchers believe they are seeing that the brain learns to abstract statistically relevant features of its world. "We are seeing that the brain is analyzing the visual scene, and driven by experience, extracting information that is important to the individual over time," says Ponce. "The brain is adapting to its environment and encoding ecologically significant information in unpredictable ways."

The team believes this technology can be applied to any neuron in the brain that responds to sensory information, such as auditory neurons, hippocampal neurons, and prefrontal cortex neurons where memories can be accessed. "This is important because as artificial intelligence researchers develop models that work as well as the brain does - or even better - we will still need to understand which networks are more likely to behave safely and further human goals," Ponce says. "More efficient AI can be grounded by knowledge of how the brain works."
-end-
This work was supported by grants from the National Institutes of Health and the National Science Foundation.

Cell, Ponce, Xiao, and Schade et al.: "Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences" https://www.cell.com/cell/fulltext/S0092-8674(19)30391-5

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit: http://www.cell.com/cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.