Nav: Home

Researchers identify drugs that block CRISPR-Cas9 genome editing

May 02, 2019

The discovery of the first small-molecule inhibitors of the Streptococcus pyogenes Cas9 (SpCas9) protein could enable more precise control over CRISPR-Cas9-based genome editing, researchers report May 2nd in the journal Cell.

By developing a suite of high-throughput biochemical and cell-based assays, the researchers screened a diverse collection of small molecules to identify compounds that disrupt the binding of SpCas9 to DNA and thereby interfere with its ability to cut DNA. These first small-molecule CRISPR-Cas9 inhibitors readily enter cells and are much smaller than the previously discovered anti-CRISPR proteins. The new compounds allow for reversible and dose-dependent control of SpCas9-based technologies, including its applications for gene editing, base editing, and epigenetic editing in mammalian cells.

"These studies lay the foundation for the rapid identification and use of small-molecule inhibitors against both SpCas9 and next-generation CRISPR-associated nucleases," says senior author Amit Choudhary of the Broad Institute, Harvard Medical School, and Brigham and Women's Hospital. "Small-molecule inhibitors targeting CRISPR-associated nucleases have the potential for widespread use in basic, biomedical, and defense research, as well as in biotechnological applications."

Currently, SpCas9 is being developed as a gene therapy agent for multiple conditions, including HIV, vision disorders, muscular dystrophy, and other hereditary disorders. But these therapeutic applications would greatly benefit from precise control over the dose and timing of SpCas9 activity to reduce off-target effects. Controlling these aspects of SpCas9 activity could also benefit other applications, such as efficiently editing the DNA of model organisms to model and study disease, and the use of gene drives in genetically engineered mosquitoes engineering mosquitoes to curb the spread of malaria and other mosquito-borne diseases.

The need for dose and temporal control of SpCas9 has created a demand for anti-CRISPR molecules. Although anti-CRISPR proteins that target SpCas9 exist, they are large and impermeable to cells, irreversible in action, can be chewed up by proteases, and may pose the risk of adverse immune reactions in the body. By contrast, small-molecule inhibitors are proteolytically stable, reversible, and generally non-immunogenic and can easily be delivered to cells through passive diffusion. In addition, they can be synthesized on a large scale at low cost with little batch-to-batch variability.

In the new study, Choudhary and his team introduced a robust, sensitive, and scalable platform for the rapid and cost-efficient identification and validation of small-molecule inhibitors of SpCas9. Measuring CRISPR-Cas9 activity in a high-throughput way that would allow for drug screening has been challenging due to the properties of the SpCas9 enzyme. In the new paper, Choudhary and colleagues developed high-throughput primary and secondary assays for SpCas9-DNA binding and SpCas9 DNA-cutting activity, respectively. For the primary assay, they used a biochemical technique called fluorescence polarization to monitor the interaction between SpCas9 and a fluorophore-labeled DNA segment containing PAM sequences. In the secondary assay, they used automated microscopy to measure fluorescence changes induced by SpCas9-mediated DNA cleavage of a reporter gene in cells.

Using these assays, the researchers first screened representative members of multiple classes of small molecules to identify the class whose members frequently inhibited SpCas9. The team identified two lead compounds that disrupt the ability of SpCas9 to bind DNA and inhibit SpCas9-mediated DNA cleavage in a dose-dependent manner in mammalian cells. Since they block DNA binding by the enzyme, these molecules also inhibit catalytically-impaired technologies of SpCas9, including those for transcriptional activation, and are stable in human plasma.

"These results lay the foundation for precise chemical control over CRISPR-Cas9 activities, enabling the safe use of such technologies," Choudhary says. "However, these molecules are not ready for applications in humans and not tested for efficacy in organisms."

In future studies, the researchers plan to identify the inhibitors' binding sites on the SpCas9:gRNA complex, examine their mechanism of action, and optimize their potency. They will also determine whether the molecules interact with other targets in mammalian cells, and assess their specificity toward other CRISPR-associated nucleases. Early results included in the Cell paper indicate that the molecules are quite specific for their target, as they have no effect on a distantly-related CRISPR enzyme, Cas12a.
Funding from DARPA's Safe Genes Program is acknowledged. The Broad Institute has filed a patent application including work described herein. Two co-authors have relationships with companies that use genome editing.

Cell, Maji et al.: "A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9"

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit: To receive Cell Press media alerts, contact

Cell Press

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.