Nav: Home

Young frogs that were stressed as tadpoles move less on land, putting their survival at risk

May 02, 2019

CORVALLIS, Ore. - New Oregon State University research shows that juvenile northern red-legged frogs that have experienced climate-related stress as tadpoles are less likely to move on land, putting their survival at risk.

The findings indicate changing patterns of precipitation and drought will influence the distribution and persistence of animals that live in freshwater habitats, said Evan Bredeweg, an OSU aquatic ecologist and lead author of the study.

The National Science Foundation-funded study is published in the journal Frontiers in Ecology and Evolution.

"This is an understudied but vital stage, where frogs are moving from one habitat to the next and the influence of the aquatic environment and the terrestrial environment act together on this one part of their life history," said Bredeweg, a graduate student of wildlife ecology in OSU's College of Agricultural Sciences. "We found that stress on tadpoles is carried over through metamorphosis in how the frogs move, in addition to the stress of being on land for the first time."

The northern red-legged frog is native to the West Coast and ranges from southwestern British Columbia to northern California. Populations are declining in Oregon. They spend the first part of their life in ponds but after metamorphosis they move to upland forested areas where they mature and live as adults. The young frogs are only about 20 millimeters in length.

"They are tiny, they are vulnerable to predators and desiccation, and they are moving this way for the first time," Bredeweg said.

The frogs return to their ponds when they are large enough to breed. Individuals have been known to disperse as far as 2½ kilometers, but most stay within 100 meters of their pond.

For the study, the researchers retrieved eggs from three ponds in the Willamette Valley, hatched the tadpoles in a lab, and placed them in outdoor tanks filled with water. Water levels in half of the tanks were drawn down by four liters every week until only two to three inches of water remained.

This was meant to simulate an ephemeral pond rapidly losing water in conditions that are warmer and drier than normal. After metamorphosis, each young frog was measured and marked with a unique color tag, then transferred to outdoor terrariums.

Two weeks later, water levels in half of the tanks were drawn down by four liters every week until only two to three inches of water remained. This was meant to simulate an ephemeral pond rapidly losing water in conditions that are warmer and drier than normal. Water levels stayed at 100 liters in the other half of the tanks. After metamorphosis, each young frog was removed from its tank, measured and marked with a unique color tag, then transferred to outdoor terrariums.

Frogs from the ephemeral conditions metamorphosed at a smaller size but grew faster than the control frogs after moving to the terrariums. But the frogs that couldn't catch up to their normal-sized counterparts weren't capable of traveling as far on land.

To track the frogs' movements, the researchers constructed four 20-meter runways on smooth topsoil. Half of the runways were doused with water immediately before frog release, while the other half remained dry - except at the release point. The dry runways were meant to be physiologically taxing on the young frogs.

The runway experiment exposed both the probability of the frog moving away from the start location and its movement distance. Larger frogs were more likely to move down the runway and able to move a farther distance than smaller individuals. In addition to the influence of size, dry runway conditions reduced the probability of frogs moving from the start location.

In an interesting and potentially positive outcome, the frogs that did move on the dry runway traveled farther.

"These frogs showed an ability be responsive to the environment, which means they could respond appropriately in drier conditions," said OSU associate professor Tiffany Garcia, the study's co-author. "But overall, this is a species that relies on producing many offspring and a few will survive. A small shift in that percentage could mean major consequences in the long run."
Co-authors on the study included Jenny Urbina, a postdoctoral scholar at OSU; and Anita Morzillo, a former assistant professor in OSU's College of Forestry who is now on the faculty at the University of Connecticut.

Bredeweg is a National Science Foundation Graduate Research Fellow in OSU's Department of Fisheries and Wildlife.

Oregon State University

Related Stress Articles:

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.
How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
A new way to see stress -- using supercomputers
Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically.
Beware of evening stress
Stressful events in the evening release less of the body's stress hormones than those that happen in the morning, suggesting possible vulnerability to stress in the evening.
How plants cope with stress
With climate change comes drought, and with drought comes higher salt concentrations in the soil.
Gene which decreases risk of social network-related stress, increases finance-related stress risk
Researchers have discovered that the same gene which increases your risk of depression following financial stress as you grow older also reduces your chance of depression associated with friendship and relationships stresses when young- your social network.
More Stress News and Stress Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab