NASA goes infrared on powerful Tropical Cyclone Fani

May 02, 2019

NASA's Aqua satellite focused an infrared eye on a very powerful Tropical Cyclone Fani as it approached landfall in northeastern India. Fani is a powerful Category 4 hurricane on the Saffir-Simpson Hurricane Wind Scale.

On May 2 at 3:29 a.m. EDT (0729 UTC), the Atmospheric Infrared Sounder or AIRS instrument aboard NASA's Aqua satellite analyzed cloud top temperatures of Tropical Cyclone Fani in infrared light. AIRS found cloud top temperatures of strongest thunderstorms as cold as or colder than minus 80 degrees Fahrenheit (minus 62 degrees Celsius) circling the eye and in a fragmented band of thunderstorms east of the center. Satellite data showed there is now a 16 nautical mile-wide round, symmetrical eye surrounded by a thick band of powerful thunderstorms. Cloud top temperatures that cold indicate strong storms that have the capability to create heavy rain.

On May 2 at 11 a.m. EST (1500 UTC), the center of Tropical Cyclone Fani was located near latitude 17.6 degrees north and longitude 84.8 degrees east. That is about 87 miles east of Visakhapatnam, India. Fani was moving to the north and maximum sustained winds increased to 135 knots (155 mph/250 kph).

Fani is forecast to move to the north-northeast. The India Meteorological Department forecasts Fani to make landfall within 12 to 24 hours, then weaken rapidly and dissipate over northeastern India and Bangladesh.
-end-
For local forecasts, visit the India Meteorological Department: http://www.imd.gov.in/

By Rob Gutro
NASA's Goddard Space Flight Center

NASA/Goddard Space Flight Center

Related Eye Articles from Brightsurf:

Empathy may be in the eye of the beholder
Do we always want people to show empathy? Not so, said researchers from the University of California, Davis.

Seeing the eye like never before
In a big step for ophthalmology, scientists created a method to view the inner workings of the eye and its diseases at the cellular level.

A smart eye mask that tracks muscle movements to tell what 'caught your eye'
Integrating first-of-its-kind washable hydrogel electrodes with a pulse sensor, researchers from the University of Massachusetts Amherst have developed smart eyewear to track eye movement and cardiac data for physiological and psychological studies.

Vision scientists discover why people literally don't see eye to eye
We humans may not always see eye to eye on politics, religion, sports and other matters of debate.

More than meets the eye
New findings reframe the traditional view of face blindness as a disorder arising strictly from deficits in visual perception of facial features.

An ethical eye on AI
Researchers from the University of Warwick, Imperial College London, EPFL (Lausanne) and Sciteb Ltd have found a mathematical means of helping regulators and business manage and police Artificial Intelligence systems' biases towards making unethical, and potentially very costly and damaging commercial choices - an ethical eye on AI.

Eye blinking on-a-chip
Researchers at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) have developed a device that moves fluids over corneal cells similarly to the movement of tears over a blinking eye.

Guardian angel of the eye
The lens of the human eye comprises a highly concentrated protein solution, which lends the lens its great refractive power.

Antibody-based eye drops show promise for treating dry eye disease
Researchers have identified the presence of a specific type of antibody, called anti-citrullinated protein autoantibodies, or ACPAs, in human tear fluid.

Left eye? Right eye? American robins have preference when looking at decoy eggs
Just as humans are usually left- or right-handed, other species sometimes prefer one appendage, or eye, over the other.

Read More: Eye News and Eye Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.