Why The Heart Stops Pumping: Researchers Identify Cellular-Molecular Defect In Heart Failure

May 02, 1997

Researchers identify cellular-molecular defect in heart failure

Untreated high blood pressure underlies much cardiovascular disease, including enlargement of the heart, heart failure, arrhythmias and stroke. It is a leading cause of death in the United States. When high blood pressure persists untreated, it enlarges the cells of the heart and produces a silent defect in the heart's pumping mechanism, according to a team of researchers headed by W. Jonathan Lederer, M.D., Ph.D. at the University of Maryland School of Medicine and Medical Biotechnology Center.

They report their findings in the May 2 issue of the journal Science.

Although the enlargement of the heart cells may appear as a beneficial adaptation of the heart in its task of pumping blood, the silent defect remains hidden like the enemy army within the Trojan horse. The Maryland researchers found that the defect within each enlarged heart cell of the animal with high blood pressure - which they traced to the same cellular and molecular changes - is identical to the defect seen later in heart failure.

A professor of physiology at the University of Maryland School of Medicine and senior author of the Science paper, Lederer is head of the Department of Molecular Biology at the University of Maryland Medical Biotechnology Center in Baltimore.

He likens the defect to a Trojan horse because it appears to be masked initially by increased activity of the sympathetic nervous system which is able to improve heart function; the defect, therefore, is not readily noticed, Lederer explains. However as the sensitivity of the heart to continuous activity of the nervous system declines with time, the defect is unmasked and contributes to the developing heart failure.

Under normal conditions, the heart beats in response to a complex electrical-chemical process called excitation-contraction (EC) coupling. During EC coupling, an electrical signal sweeps through the heart to trigger the contraction that pumps blood throughout the body. This wave of electrical activation spreads through the heart, permitting a minute amount of calcium to enter each heart cell through some 100,000 calcium channels that cover the surface of the cells. These calcium channels are the targets for widely-used "calcium channel-blocker" medications.

Normally, the calcium that enters through each calcium channel is like a muffled starting gun, which must be amplified before it can be heard CALLING the cell to action. Luckily, there are close to a million amplifier modules throughout the cell, conveniently located close to the calcium channels. They amplify the weak signal from the calcium channels to produce a much larger rise in calcium, which in turn causes the heart cells to contract.

Studying the EC coupling of heart cells of rats with high blood pressure displaying either simple cellular enlargement or contractile failure, Lederer and his research team found a surprising defect. Although each of the elements in the calcium amplification system worked properly, the signals produced by the calcium channels were nonetheless inadequately amplified and thus remained muffled in both cell types. This defect reduces the contraction in each heart cell and therefore leads to "cellular" heart failure.

They studied the cells' calcium release process using a special confocal microscope to visualize the amplified signal triggered by the calcium channels. These are seen as "calcium sparks." The discovery of "Ca2+ sparks" by Lederer and his co-workers four years ago has revolutionized the investigation of cardiac, skeletal and smooth muscle function and is an essential element in the present work. All of the other features of heart cell function were measured optically or electrically.

"Our data suggest that hypertension-induced cardiac hypertrophy (enlargement of the heart) reduces the ability of calcium channels to activate calcium release from intracellular stores, even though all elements of the system are normal," said Lederer. "It appears that defect is one of communication between calcium channels and the intracellular organelles. The activity of the sympathetic nervous system is able to improve the communication without fixing the defect during cardiac hypertrophy before heart failure develops. But in heart failure the defect has its full negative effect because the heart cells respond poorly to activity of the sympathetic nervous system."

"Because of our improved understanding of the molecular defects that develop in heart failure, it may be possible to develop novel drugs, molecular therapies or treatment programs to treat this devastating disease. Furthermore, our findings, which link high blood pressure to the development of the "stealth defect" found within the heart cells before failure develops, provide an additional reason for all hypertensive patients to seek immediate effective treatment. While late treatment may fix the high blood pressure, it may not be able to reverse this defect and the consequent heart failure."

Lederer and colleagues at the University of Maryland School of Medicine and Medical Biotechnology Center collaborated with scientists from the University of Wisconsin Medical Center, the National Institute of Aging, St. George's Hospital Medical School in London, England, and Ohio State University. Their work was supported by the National Institutes of Health, the Maryland Heart Association, the BHF and Wellcome Trust, the Spanish Ministry of Education and Science, and a Minority Scientist Development Award from the American Heart Association.

University of Maryland School of Medicine

Related Heart Failure Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.

Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.

Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.

Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.

Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.

How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.

Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.

Read More: Heart Failure News and Heart Failure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.