Man-made climate change

May 03, 2006

(VIRGINIA KEY, FL, May 3, 2006) - A new study published in this week's issue of Nature is the first to show that human activity is altering the circulation of the tropical atmosphere and ocean through global warming.

Scientists widely agree that the climate has warmed over the past century and that human activities, such as burning fossil fuels, have significantly contributed to this global warming. This study tapped historical records that date back to the mid-19th century as well as simple theory and state-of-the-art computer model simulations to detect and attribute these climate changes. The conclusion was that the principal loop of winds that drives climate and ocean behavior across the tropical Pacific is slowing down and causing the climate to drift towards a more El Niño-like state. This could have important implications for the frequency and intensity of future El Niño events and biological productivity in tropical oceans.

In their paper, titled "Weakening of Tropical Pacific Atmospheric Circulation Due to Anthropogenic Forcing," the researchers identify a 3.5 percent weakening that has occurred since the mid-1800s in this air system known as the Walker circulation. They also cite evidence that it may weaken another 10 percent by 2100.

"There is an indication that the slowdown may be intensifying," said Dr. Gabriel A. Vecchi, lead author from NOAA's Geophysical Fluid Dynamics Laboratory. "The trend since World War II is larger than that over the entire record, and the long-term trend is larger than what is expected from natural climate variability. This is why we employed a very long observational record - to be able to accurately detect and attribute these changes."

The study does send mixed signals on the future of El Niño/La Niña. "While we can't predict with certainty how the frequency or intensity of El Niño-related weather events will respond to global warming, our study does suggest that the climate as a whole is slowly moving towards a more El Niño-like state," said Dr. Brian Soden, a co-author from the University of Miami Rosenstiel School of Marine and Atmospheric Science. "Additionally, this slowdown has modified the structure and circulation of the tropical Pacific Ocean, which is a source of nutrients to one of the most biologically productive regions of the world's oceans. This has implications to the well-being and proliferation of marine life in tropical oceans."

"The Walker circulation is fundamental to climate throughout the globe: its variations are closely linked to those of the El Niño/Southern Oscillation and monsoonal circulations over adjacent continents, and variations in its intensity and structure affect climate all over the globe," wrote Vecchi, Soden, and their co-authors Andrew T. Wittenberg, Isaac M. Held, Ants Leetmaa, and Matthew J. Harrison, also from the NOAA Geophysical Fluid Dynamics Laboratory in Princeton, N.J. The Walker circulation spans almost half the circumference of the Earth.

This study found a weakening of the Walker circulation in historical observations that corresponds closely to what theoretical and modeling studies expect from an increase in greenhouse gases. This agreement provides increased confidence in model projections of future climate change in the tropics.
-end-
Rosenstiel School is part of the University of Miami and, since its founding in the 1940s, has grown into one of the world's premier marine and atmospheric research institutions.

University of Miami Rosenstiel School of Marine & Atmospheric Science

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.