Scientists step closer to realising invisible technology

May 03, 2007

A unique computer model designed by a mathematician at the University of Liverpool has shown that it is possible to make objects, such as aeroplanes and submarines, appear invisible at close range.

Scientists have already created an 'invisibility cloak' made out of 'metamaterial' which can bend electromagnetic radiation - such as visible light, radar or microwaves - around a spherical space, making an object within this region appear invisible.

Until now, scientists could only make objects appear invisible from far away. Liverpool mathematician Dr Sébastien Guenneau, together with Dr Frédéric Zolla and Professors André Nicolet from the University of Marseille, have proven - using a specially designed computer model called GETDP - that objects can also be made to appear invisible from close range when light travels in waves rather than beams.

Scientists predict that metamaterials could be of use in military technology, such as in the construction of fighter jets and submarines, but it will be some years before invisibility cloaks can be developed for human beings.

Dr Guenneau, at the University's Department of Mathematical Science, explains: "The shape and structure of aeroplanes make them ideal objects for cloaking, as they have a fixed structure and movement pattern. Human beings and animals are more difficult as their movement is very flexible, so the cloak - as it is designed at the moment - would easily be seen when the person or animal made any sudden movement.

"A cloak, such as the one worn by the Harry Potter character for example, is not yet possible but it is a good example of what we are trying to move towards. Using this new computer model we can prove that light can bend around an object under a cloak and is not diffracted by the object. This happens because the metamaterial that makes up the cloak stretches the metrics of space, in a similar way to what heavy planets and stars do for the metrics of space-time in Einstein's general relativity theory.

"In order for the cloaking device to work in the first place light has to separate into two or more waves resulting in a new wave pattern. Within this pattern we get light and dark regions which are needed in order for an object to appear invisible.

"Until now, however, it was not clear whether photons - particles that make up all forms of light - can split and form new waves when the light source is close to the object. If we use ray optic techniques - where light travels in beams - photons break down at close range and the object does not appear invisible. If we study light as it travels in waves however, invisibility is maintained."

Scientists predict that invisibility will be possible for objects of any shape and size within the next decade.
The research findings are published in Optic Letters.

University of Liverpool

Related Invisibility Articles from Brightsurf:

New invisibility concept and miniaturization of photonic circuits using ultrafast laser
Thanks to its unique three-dimensional manufacturing capacity, ultrafast laser writing is a prime candidate to meet the growing demand for the miniaturization of photonic circuitry, e.g., for scaling up optical quantum computers capacity.

The invisibility cloak of a fungus
The human immune system can easily recognize fungi because their cells are surrounded by a solid cell wall of chitin and other complex sugars.

Cretan tomb's location may have strengthened territorial claim
Examining the position occupied by tombs in their landscape in Prepalatial Crete gives us new insights into the role played by burial sites, mortuary practices and the deceased in the living society.

Artificial intelligence (AI) designs metamaterials used in the invisibility cloak
The research group of Prof. Junsuk Rho, Sunae So and Jungho Mun of Department of Mechanical Engineering and Department of Chemical Engineering at POSTECH developed a design with a higher degree of freedom which allows to choose materials and to design photonic structures arbitrarily by using Deep Learning.

Dashing the dream of ideal 'invisibility' cloaks for stress waves
Some have dreamt of the perfect cloak to make buildings impervious to stress waves caused by bombs, earthquakes or other calamities.

Photonics: The curious case of the disappearing cylinders
A pair of researchers at Tokyo Tech describes a way of making a submicron-sized cylinder disappear without using any specialized coating.

New technique to make objects invisible proposed
Researchers at the University of Extremadura have demonstrated the electromagnetic invisibility of objects using an alternative technique, based on filler cloaking.

Extremely small magnetic nanostructures with invisibility cloak imaged
In novel concepts of magnetic data storage, it is intended to send small magnetic bits back and forth in a chip structure, store them densely packed and read them out later.

Missing men, missing infertility: New research flags up problem
Men are missing from fertility debates and crucial support services because they are often not included in studies and, when they are, it is usually only married, heterosexual men who are asked for data.

Scientists discover the secrets behind the cuttlefish's 3-D 'invisibility cloak'
An international team of scientists has identified the neural circuits that enable cuttlefish to change their appearance in just the blink to eye -- and discovered that this is similar to the neural circuit that controls iridescence in squids.

Read More: Invisibility News and Invisibility Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to