Improving UAVs using holographic adaptive optics

May 03, 2010

Air Force Office of Scientific Research-supported holographic, adaptive, optics research may help transform software into computer-free, electronics for unmanned aerial vehicles, high energy lasers and free-space optical communications that will enable each to run faster and more efficiently than before.

Dr. Geoff Andersen, senior researcher at the Laser and Optics Research Center at the United States Air Force Academy in Colorado Springs, is leading a team of researchers who have successfully demonstrated the latest new type of adaptive optics, which incorporate holograms. The conventional, computer-based technology has been in use for over two decades, but is not suitable to some military applications, including UAVs because of its required calculations and high computing costs.

The new technology will be able to be incorporated on unmanned aerial vehicles because it is very compact and lightweight.

"We will see hugely improved images from these new surveillance platforms that holographic adaptive optics will make possible," said Andersen.

"The current system for UAV imagery, lasers and optics is computer software driven, but the next phase is to replace that with an electronics system called High Altitude Large Optics," he said. "Such a system would be orders of magnitude faster than anything else available, while being much more compact and lightweight."

It is hoped that HALOS will become the standard in adaptive optics of the future. It may also create entirely new markets for sharper telescopes and camera images that will be used for military purposes.
-end-
ABOUT AFOSR:

The Air Force Office of Scientific Research, located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape and champion basic science that profoundly impacts the future Air Force.

Air Force Office of Scientific Research

Related Electronics Articles from Brightsurf:

Artificial materials for more efficient electronics
The discovery by a team of the University of Geneva of an unprecedented physical effect in a new artificial material marks a significant milestone in the lengthy process of developing ''made-to-order'' materials and more energy-efficient electronics.

The new tattoo: Drawing electronics on skin
One day, people could monitor their own health conditions by simply picking up a pencil and drawing a bioelectronic device on their skin.

Lighting the way to porous electronics and sensors
Researchers from Osaka University have created porous titanium dioxide ceramic thin films, at high temperatures and room temperature.

The ink of the future in printed electronics
A research group led by Simone Fabiano at the Laboratory of Organic Electronics, Linköping University, has created an organic material with superb conductivity that doesn't need to be doped.

Integrating electronics onto physical prototypes
MIT researchers have invented a way to integrate 'breadboards' -- flat platforms widely used for electronics prototyping -- directly onto physical products.

Something from nothing: Using waste heat to power electronics
Researchers from the University of Tsukuba developed an improved thermocell design to convert heat into electricity.

Electronics at the speed of light
A European team of researchers including physicists from the University of Konstanz has found a way of transporting electrons at times below the femtosecond range by manipulating them with light.

Electronics integrated to the muscle via 'Kirigami'
A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology has developed a donut-shaped kirigami device for electromyography (EMG) recordings.

Creating 2D heterostructures for future electronics
New research integrates nanomaterials into heterostructures, an important step toward creating nanoelectronics.

Researchers report a new way to produce curvy electronics
Contact lenses that can monitor your health as well as correct your eyesight aren't science fiction, but an efficient manufacturing method has remained elusive.

Read More: Electronics News and Electronics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.