Nav: Home

ASU scientists discover how one microorganism erodes coral reefs

May 03, 2016

Coral reefs and hard-shelled sea creatures such as oysters and mussels are constantly being threatened, not only by the detrimental effects of stressors such as climate change and habitat loss, but also by microorganisms.

Researchers from Arizona State University have discovered how a particular type of cyanobacteria, a photosynthetic microbe, is able to bore into and live within solid carbonates, the main mineral that makes up coral skeletons and seashells -- hastening their erosion and causing trouble for shellfish farmers.

Organisms that can do this, known as euendoliths, infest many kinds of rock, but they are especially adept at boring into rock types that consist of calcium carbonate, such as limestone and marble used to make sculptures, buildings and other man-made structures.

Brandon Guida, a School of Life Sciences doctoral candidate and lead author of the study, said: "The mechanisms by which these organisms can excavate carbonates and live inside rocks were, until now, a real mystery that seemed to go against the laws of chemistry. But now we have a better idea how they do it." Their findings confirm several previous hypotheses.

Guida and his mentor, Ferran Garcia-Pichel, Dean of Natural Sciences with the ASU College of Liberal Arts and Sciences, published their findings in this week's early online edition of the scientific journal Proceedings of the National Academy of Sciences.

The scientists found that these rock-busting microbes, orchestrate the activities of many cells in a coordinated way to transport mineral calcium to the surface, much like a conveyor. This type of cell to cell calcium transport has never been observed in bacteria before.

Too much calcium inside any cell can be toxic, and all known life forms keep it at very low levels inside. However, this particular cyanobacterium can move a lot of calcium though its cells. To prevent calcium from becoming toxic in most cells, they develop a few special cells -- a type of "calcium depot" -- also never seen before, to help store and regulate the release of the calcium in an organized fashion.

"The level of cellular specialization and organization observed in this single bacterium is remarkable. Our research here supports the idea that bacteria are not just simple unicellular organisms but can be sophisticated, organized and truly multicellular," added Guida.

"The implications of these findings for cell biology and the environment go beyond this particular study," said Garcia-Pichel, co-author of the study and professor with the School of Life Sciences. "These microorganisms teach us how one can use light energy to transport materials at a small scale, and how to efficiently engineer processes that may be of use in geotechnics, or put to work as targeted decalcifying agents. After more than 3 billion years of evolutionary tweaking, microbes often provide us with such learning moments."

While this research answers many questions, more remain, such as why these microbes bore in the first place and how can they survive the intracellular calcium concentration the scientists do observe. The researchers say the next steps will be to look at the genes used by this cyanobacterium and to study whether these bacteria are actually consuming the carbon in the rock as well.

"We now hypothesize that the observed calcium transport is only part of the picture and that these microbes may actually be using the carbon released during boring process in photosynthesis, essentially eating the rock, which would be pretty awesome," said Guida.
-end-


Arizona State University

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...