Nav: Home

Researchers unveil architecture of mitochondrial calcium uniporter

May 03, 2016

Mitochondria are key integrators of cellular calcium (Ca2+) signaling and energy metabolism. Early studies demonstrated that isolated mitochondria could buffer huge amounts of Ca2+ via a highly selective channel called the "uniporter". Uptake of Ca2+ via the uniporter is known to activate the citric acid cycle, while its overload leads to cell death. Although the uniporter has been studied extensively for over 50 years and its molecular identity remained elusive until in 2011, computational genomics studies discovered its molecular components. The centerpiece of the uniporter, the calcium-conducting subunit, is MCU (mitochondrial calcium uniporter). MCU exhibits the unique property of both high selectivity and high conductance for calcium, which makes it an intriguing structural target being pursued by many structural biology labs worldwide.

Prof. James J. Chou's lab, together with their collaborators, Prof. CONG Yao's group and Prof. OUYANG Bo's group in National Center for Protein Science ·Shanghai, Institute of Biochemistry and Cell Biology (SIBCB), Institutions of Shanghai Institutes for Biological Sciences, CAS, and Prof. Vamsi Mootha's group in Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, USA, revealed the MCU architecture using nuclear magnetic resonance (NMR) and electron microscopy (EM).

The MCU structure is a homopentamer with the second transmembrane helix forming a hydrophilic pore across the membrane. The critical DxxE amino acid sequence motif forms the pore entrance featuring two carboxylate rings, which appear to be the ion selectivity filter. The structure represents a novel ion channel architecture and suggests a passage for calcium transport. This is one of the largest structures characterized by NMR, providing a structural blueprint for understanding the function of this channel.

In addition to MCU, the uniporter complex also includes other components, including the channel gate keeper EMRE (essential MCU regulator), and regulatory subunits MICU1 (mitochondrial calcium uptake 1), MICU2 (mitochondrial calcium uptake 2), and MCUb (MCU isoform b). The complexity implies intricate regulation of MCU, which appears to be an ancient calcium channel that is a part of the earliest eukaryotes. The reported MCU pore architecture represents the first step towards understanding how this complex calcium uniporter works.

The high quality NMR and EM data were collected in National Center for Protein Science ·Shanghai, owing to technical supports by LIU Zhijun on NMR and by KONG Liangliang on EM. The Center is equipped with the state-of-the-art facilities and enabling technologies for life science study and provides superb service for domestic and international users.
This work entitled "Architecture of the Mitochondrial Calcium Uniporter", was published in Nature on May 2, 2016.

This work was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences, National Institutes of Health (NIH), and Howard Hughes Medical Institute.

Chinese Academy of Sciences Headquarters

Related Calcium Articles:

A docking site per calcium channel cluster
In our brain, information is passed from one neuron to the next at a structure called synapse.
Astrophysicists discovered a star polluted by calcium
An international team of astrophysicists led by a scientist from the Sternberg Astronomical Institute of the Lomonosov Moscow State University reported the discovery of a binary solar-type star inside the supernova remnant RCW 86.
Daily reminders to increase calcium intake are effective
Mary Jung, an assistant professor of health and exercise sciences at UBC's Okanagan campus, recently completed a nationwide study with more than 730 Canadians who were not meeting Canada's recommended dietary intake for calcium.
New guideline on calcium and vitamin D supplementation
A new evidence-based clinical guideline from the National Osteoporosis Foundation and the American Society for Preventive Cardiology says that calcium with or without vitamin D intake from food or supplements that does not exceed the tolerable upper level of intake should be considered safe from a cardiovascular standpoint.
Calcium induces chronic lung infections
The bacterium Pseudomonas aeruginosa is a life-threatening pathogen in hospitals.
Calcium supplements may damage the heart
After analyzing 10 years of medical tests on more than 2,700 people in a federally funded heart disease study, researchers at Johns Hopkins Medicine and elsewhere conclude that taking calcium in the form of supplements may raise the risk of plaque buildup in arteries and heart damage, although a diet high in calcium-rich foods appears be protective.
Physics researchers question calcium-52's magic
After a multi-institution team's work computing the calcium-48 nucleus, researchers moved on to a larger, heavier, and more complex isotope -- calcium-52 -- and the results surprised them once again.
Study paves way for new therapies in fight against calcium disorders
A study led by researchers at Georgia State University provides new insights into the molecular basis of human diseases resulting from mutations in the calcium-sensing receptor, a protein found in cell membranes.
Calcium channels team up to activate excitable cells
Voltage-gated calcium channels open in unison, rather than independently, to allow calcium ions into and activate excitable cells such as neurons and muscle cells, researchers with UC Davis Health System and the University of Washington have found.
A calcium pump caught in the act
Researchers at Aarhus University have described one of the cell's key enzymes, the calcium pump, in its decisive moment -- a so-called transition state.

Related Calcium Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...