Nav: Home

Watch immune cells 'glue' broken blood vessels back together

May 03, 2016

As we age, tiny blood vessels in the brain stiffen and sometimes rupture, causing "microbleeds." This damage has been associated with neurodegenerative diseases and cognitive decline, but whether the brain can naturally repair itself beyond growing new blood-vessel tissue has been unknown. A zebrafish study published on May 3 in Immunity describes for the first time how white blood cells called macrophages can grab the broken ends of a blood vessel and stick them back together.

"Microbleeding occurs very often in the human brain, particularly in elderly people," says Lingfei Luo, a developmental geneticist at Southwest University in China. "We believe that this macrophage behavior is the major cellular mechanism to repair ruptures of blood vessels and avoid microbleeding in the brain."

To simulate a human brain microbleed, Luo and his colleagues shot lasers into the brains of live zebrafish to rupture small blood vessels, creating a clean split in the tissue with two broken ends. Then, the researchers used a specialized microscope to watch what happened next.

The repair process started about a half hour after the laser injury. A macrophage showed up at the damaged blood vessel site and extended two "arms" from its body toward the ends of the broken blood vessel, producing a variety of adhesion molecules to attach itself. Then, it pulled the two broken ends together to mediate their repair. The researchers suspect that adhesion molecules produced by the blood-vessel tissue also play a role in reattachment. Once they were adhered, the macrophage left the scene. The whole process took about three hours.

"At the beginning, we weren't sure this was a repairing behavior," says Chi Liu, a PhD student at Southwest University. "After we confirmed that the macrophage mediates this repair through direct physical adhesion and generation of mechanical traction forces, we were excited. This is a previously unexpected role of macrophages."

A similar repair process also occurred outside the brain. When the researchers ruptured a blood vessel in the zebrafish fin using a laser, a macrophage arrived at the injury site and extended its protrusions to pull the broken blood vessel back together.

The researchers did observe a few quirks in the process. When they used a laser strike to destroy the first macrophage that arrived at a laser-wound site in the brain, no other macrophages came to help repair the breakage (but another macrophage arrived to eat the dead one). Rarely, two macrophages would arrive at the injury on their own, each grab a broken end of the blood vessel, and then simply disengage without fixing the damage.

Macrophages aren't the brain's only repair mechanism for small broken blood vessels, though they look to be the fastest and most efficient. When the researchers watched blood-vessel repair in zebrafish that lacked macrophages, they saw the broken ends of the blood vessel slowly extending on their own to connect over a period of six hours.

"Several aspects of vascular development and remodeling, associated with macrophages, are conserved in human and zebrafish," notes Luo. "Microglia [a subset of macrophage cells] are required for the repair of blood-brain barrier injury in mice, and macrophages can be found surrounding most capillary microbleeds in humans. We believe that the macrophage repair system in our study is very much likely replicated in humans and mice."
-end-
This study was supported the National Key Basic Research Program of China, the National Natural Science Foundation of China, and the 111 Program.

Immunity, Liu et al.: "Macrophages Mediate the Repair of Brain Vascular Rupture through Direct Physical Adhesion and Mechanical Traction" http://www.cell.com/immunity/fulltext/S1074-7613(16)30097-8

Immunity (@ImmunityCP), published by Cell Press, is a monthly journal that reports the most important advances in immunology research. Topics include: immune cell development and senescence, signal transduction, gene regulation, innate and adaptive immunity, autoimmunity, infectious disease, allergy and asthma, transplantation, and tumor immunology. Visit: http://www.cell.com/immunity. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Blood Vessels Articles:

Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Related Blood Vessels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...