Nav: Home

Active systems: Life is motion

May 03, 2016

Physicists from Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a way to distinguish the random motions of particles in non-living molecular systems from the motility of active living matter. The method affords new insights into fundamental biological processes.

What are the salient physical and chemical properties that distinguish living organisms from non-living matter? This is a question that has fascinated scientists for centuries. One of the key differences between the two classes lies in the fact that living systems are maintained in a non-equilibrium state. To avoid the otherwise inevitable slide into thermodynamic equilibrium they must continuously expend energy -- to power active motions and keep the cell alive. The LMU physicist Professor Chase Broedersz, in collaboration with researchers based in Göttingen, Amsterdam, the Massachussetts Institute of Technology and Yale University, has now developed a method that can differentiate between the active motions characteristic of living cells and those driven by the random molecular movements that give rise to passive diffusion. The technique also provides deeper insights into fundamental processes that are specific to biological systems. The new findings appear in the latest issue of the leading journal Science.

"Strikingly, in the world of microscopically tiny particles, molecular motion as such does not necessarily imply that one is dealing with a thermodynamically non-equilibrium state or an actively driven process. Molecular motions can also result from the thermally driven bombardment of small particles by molecules in the surrounding medium," Broederzs points out. These thermal collisions with molecules alter the trajectory of minute particles and give rise thermal diffusion. At first sight, many actively driven processes in living cells appear to be equally random in nature. "So in order to understand cell functions, one must be able to distinguish them from equilibrium systems," says Broedersz.

Video analysis of organelle motion

Broedersz and his colleagues now describe a method which, for the first time, enables living systems to be conclusively and non-invasively identified to be out of equilibrium at microscopic scales. The procedure makes use of the principle of detailed balance, which states that, in systems that have attained equilibrium, the average rate of every elementary process is equal to that of its reverse -- forward and backward reactions effectively cancel out. If this principle does not hold, the system is by definition in a non-equilibrium state and must be driven by the input of energy from an external source. "Our new method relies on a video imaging system which allows us to visualize microscopic motions in real time. The resulting imaging data can then be analyzed to determine whether or not the system obeys the principle of detailed balance," says Broedersz.

In the study, the team analyzed the motions of two types of hair-like cell protrusions made up of proteinaceous filaments - the so-called flagella found on the unicellular green alga Chlamydomonas reinhardtii and the primary cilium found on many epithelial tissues in multicellular organisms. Flagella and primary cilia are quite similar in their basic structure, but their biological functions and modes of action differ. Flagella are used by microorganisms to swim through liquid media, while primary cilia act primarily as motile sensors on epithelial surfaces. "With the help of our imaging data," says Broedersz, "we were able to demonstrate that, instead of simply waving back and forth, both flagella and cilia on average carry out cycles of actively driven and distinct movements -- and in so doing they violate the principle of detailed balance."

Moreover, the two organelles differ with respect to the precise nature of the movements they exhibit: Flagella beat periodically, and their motions display relatively little random variability. Ciliary motions, on the other hand, are characterized by a much higher level of irregularity. In spite of these differences, however, the analyses showed that both systems contravene the principle of detailed balance.

"These findings are of interest not only in the context of biology, although they provide a means of recognizing non-equilibrium situations in biological systems and afford new insights into the complex processes that make life possible," says Broedersz. "They are also of great significance for the fields of statistical mechanics and biophysics, because they raise fundamental issues relating to the question of how active molecular processes drive large-scale non-equilibrium dynamics."

Ludwig-Maximilians-Universität München

Related Cilia Articles:

Why the Galapagos cormorant lost its ability to fly
A new study points to a number of genes that may underlie the loss of flight in the Galapagos cormorant.
Cilia structure plays a major role in determining susceptibility to neural tube defects
Research published online in The FASEB Journal shows that the improper methylation of a protein called 'Septin2,' which regulates the structure of cilia, was associated with an increased risk of having a neural tube defect (NTD) and confirms that cilia are important factors in determining susceptibility of NTDs.
Transport of molecular motors into cilia
Molecular motors produce the force that powers the beat of sperm cell tails to generate movement toward the egg cell for fertilization.
FASEB Science Research Conference: The Biology of Cilia and Flagella
Research on the biology of the cilium has seen explosive growth as its essential roles in cell signaling and human disease are now well recognized.
IFT20 protein's role in helping cancer cells to invade
An international research team has discovered that the IFT20 protein helps some cancer cells to invade by facilitating the transportation of membranes and proteins within parts of the cell.
Scientists show how cells communicate
Primary cilia are antenna-like structures that are present on the surface of most cells in the human body.
Some cells need a 'haircut' before duplicating
Many of our cells are equipped with a hairlike 'antenna' that relays information about the external environment to the cell, and scientists have already discovered that the appearance and disappearance of these so-called primary cilia are synchronized with the process of cellular duplication, called mitosis
New book on Cilia from Cold Spring Harbor Laboratory Press
'Cilia', from CSHLPress, examines key aspects of ciliary biology -- from the molecular to the organismal level -- in normal physiology and disease.
Scientists find cause of facial widening defects
Widening across the forehead and nose occurs when loss of cilia at the surface of the cells disrupts internal signaling and causes two GLI proteins to stop repressing midfacial growth.
Faculty team awarded $1.25 million to study 'swimming cells'
They are the tiny motors present in many of the human body's most complex systems: cilia and flagella move liquids such as cerebrospinal fluid and mucus past the cell surface, and throughout the body.

Related Cilia Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...