Nav: Home

Transplanted nerve cells survive a quarter of a century in a Parkinson's disease patient

May 03, 2016

In the late 1980s and over the 1990s, researchers at Lund University in Sweden pioneered the transplantation of new nerve cells into the brains of patients with Parkinson's disease. The outcomes proved for the first time that transplanted nerve cells can survive and function in the diseased human brain. Some patients showed marked improvement after the transplantation while others showed moderate or no relief of symptoms. A small number of patients suffered unwanted side-effects in the form of involuntary movements.

Ever since the first transplantations were carried out, a fundamental question has been whether the transplanted cells and their neural connections could survive and function over time despite ongoing disease in the patient's brain. Now researchers at Lund University have proven that transplanted nerve cells can survive for many years and restore normal dopamine production in the transplanted part of the brain. The study has been published by the distinguished scientific journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

"Our findings show that transplanted nerve cells can survive and function for many years in the diseased human brain", says Professor Olle Lindvall, one of the researchers behind the study. "This is the first time a patient has shown such a well-functioning transplant so many years after transplantation of nerve cells to the brain. At the same time, we have observed that the transplant's positive effects on this patient gradually disappeared as the disease spread to more structures in the brain."

The researchers followed a patient with Parkinson's disease who underwent transplantation of dopamine-producing nerve cells 24 years before death. The patient showed such marked improvement that medication with L-dopa was no longer necessary three years after the transplantation. Brain-imaging technology allowed the researchers to show that dopamine function was completely normal in the transplanted brain structure ten years after the operation. The new study analyses the patient's brain and the researchers can now prove that the transplanted dopamine-producing cells and their normal neural connections are still present almost a quarter of a century after the operation.

"This gives us a better understanding of how Parkinson's disease spreads in the brain", explains Professor Jia-Yi Li, who led the study together with Olle Lindvall and Anders Björklund.

"This study is completely unique", says Professor Anders Björklund. "No transplanted Parkinson's patient has ever been followed so closely and over such a long period. The patient was also unique in the sense that the nerve cells were only transplanted to one hemisphere of the brain, which meant that the other, which did not receive any transplant, could function as a control. What we have learnt from the study of this patient will be of great value for future attempts to transplant dopamine-producing nerve cells obtained from stem cells, a new development led by researchers in Lund."
-end-
Research article

Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain Proceedings of the National Academy of Sciences of the United States of America (PNAS): http://www.pnas.org/content/early/2016/04/26/1605245113.full?sid=d3ca3a44-754e-406b-a788-14f30bc34a32

For more information, please contact:

Jia-Yi Li
Professor of Neuroscience at Lund University
Tel: 46-46-222-06-34
Email: jia-yi.li@med.lu.se

Anders Björklund
Professor of Neurobiology at Lund University
Tel: 46-46-222-05-40; Mobile: 46-70-14-67-61
Email: anders.bjorklund@med.lu.se

Olle Lindvall
Professor of Neurology at Lund University
Tel: 46-46-222-05-43, 46-705-171466
Email: olle.lindvall@med.lu.se

Parkinson's disease facts

Parkinson's disease is a common neurological disease caused by the loss of a specific group of nerve cells in the brain which produce dopamine. The loss of dopamine cells in the patient leads to decreased mobility, muscular stiffness and tremors. The most common treatment for Parkinson's disease is L-dopa, which is converted into dopamine in the brain. The problem is that treatment with L-dopa is less effective over time. At this stage of the disease, other drugs and a process known as deep-brain stimulation (DBS) are also available. Yet the need for new treatment methods for Parkinson's disease is great. One possible future therapeutic strategy to reduce difficulties with movement in Parkinson's disease is to replace the dead dopamine- producing nerve cells with new, healthy cells through transplantation.

Lund University

Related Nerve Cells Articles:

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.
Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.
Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.
How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.
Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.
Nerve cells in the human brain can 'count'
How do we know if we're looking at three apples or four?
How rabies virus moves through nerve cells, and how it might be stopped
Researchers found that the rabies virus travels through neurons differently than other neuron-invading viruses, and that its journey can be stopped by a drug commonly used to treat amoebic dysentery.
Direct conversion of non-neuronal cells into nerve cells
Researchers of the Mainz University Medical Center discovered that on the way to becoming neurons pericytes need to go through a neural stem cell-like state.
More Nerve Cells News and Nerve Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.