Nav: Home

New fabrication and thermo-optical tuning of whispering gallery microlasers

May 03, 2016

Scientists from the Light-Matter Interactions Unit, led by Professor Síle Nic Chormaic at the Okinawa Institute of Science and Technology Graduate University (OIST), have developed a new technique to fabricate glass microlasers and tune them using compressed air. The new technique, published in Scientific Reports, could pave the way for the simple serial production of glass microlasers and could be used in a wide range of applications, such as optical communications, chemical or biosensing.

Microlasers are tiny optical devices a few tens of micrometres in diameter that are able to create intense light with only one colour or wavelength. OIST researchers found a new method to fabricate a special type of glass microlaser, called whispering gallery microlasers. Whispering gallery microlasers are doughnut-shaped or spherical devices produced from glass doped with rare earth elements, such as erbium or ytterbium (Er or Yb). Inside the microlasers, light is reflected over and over creating a 10-100 metre long optical path within a tiny device that's the size of a grain of sand.

Taking advantage of the different melting temperatures of silica and Er or Yb doped phosphate glass, OIST scientists have devised a new way to produce microlasers via glass wetting, or glass-on-glass fabrication. In this new technique, a strand of Er or Yb doped phosphate glass is melted and allowed to flow around a hollow capillary of silica. This is possible because of the different melting temperatures of silica and phosphate glass at 1500°C and 500°C, respectively. This technique produces bottle-shaped microlasers, which are 170 micrometres in diameter. The bottle-shape can then be modified to become a thin coating of only a few micrometres in diameter around the capillary.

While fabricating doped glass microlasers using traditional methods can be tedious, with each individual sphere being attached to a glass strand, this glass wetting technique allows scientists to make any number of microlasers quickly and in series.

This technique also facilitates a new way of tuning the wavelength or colour of light emitted by the microlasers. The tuning is achieved by a combination of pressure and temperature. Compressed gas passed through the capillary cools the walls of the hollow structure. This cooling effect makes the diameter of the microlaser contract, which changes the laser output wavelength.

Microlasers prepared with this new technique were used to measure the air flow in microfluidic devices and have been shown to be more sensitive than commercial electronic flow sensors, as well as 10,000 times smaller.

"We wanted the ability to tune micro-scale lasers without increasing the size and the complexity of the device and keeping high quality," points out Dr Jonathan Ward, the first author of this study. "This could be a step towards the quick and easy fabrication of smaller devices for biosensing and optical communications."
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Glass Articles:

Making glass more clear
Northwestern University researchers have developed an algorithm that makes it possible to design glassy materials with dynamic properties and predict their continually changing behaviors.
Researchers use 3D printer to print glass
For the first time, researchers have successfully 3D printed chalcogenide glass, a unique material used to make optical components that operate at mid-infrared wavelengths.
New family of glass good for lenses
A new composition of germanosilicate glass created by adding zinc oxide has properties good for lens applications, according to Penn State researchers.
In-depth insights into glass corrosion
Silicate glass has many applications, including the use as a nuclear waste form to immobilize radioactive elements from spent fuel.
Laser-fabricated crystals in glass are ferroelectric
For the first time, a team of researchers from Lehigh University, Oak Ridge National Laboratory, Lebanon Valley College and Corning Inc. has demonstrated that laser-generated crystals confined in glass retain controllable ferroelectric properties, key to creating faster, more efficient optical communication systems.
New research questions the 'Glass Cliff' and corroborates the persistent 'Glass Ceiling'
Are women more likely to be appointed to leadership positions in crisis situations when companies are struggling with declining profits?
A new path through the looking-glass
Exploring the mystery of the molecular handedness in nature, scientists have proposed a new experimental scheme to create custom-made mirror molecules for analysis.
Careful -- You are made of glass
Researcher Otger Campas and his group uncover how tissues and organs are sculpted during embryogenesis
Breaking laws, making glass
IBS researchers have designed an innovative method to study how interacting particles behave at temperatures close to absolute zero, and found a situation where the laws of thermodynamics and statistical mechanics are not respected, energy is not evenly distributed, and equilibrium is not reached.
Visual worlds in mirror and glass
The Visual Perception and Cognition Laboratory research team at the Toyohashi University of Technology has uncovered a material perception mechanism with which humans discriminate between reflective and transparent materials (mirror and glass).
More Glass News and Glass Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.