Nav: Home

Algae use their 'tails' to gallop and trot like quadrupeds

May 03, 2016

Long before there were fish swimming in the oceans, tiny microorganisms were using long slender appendages called cilia and flagella to navigate their watery habitats. Now, new research reveals that species of single-celled algae coordinate their flagella to achieve a remarkable diversity of swimming gaits.

When it comes to four-legged animals such as cats, horses and deer, or even humans, the concept of a gait is familiar, but what about unicellular green algae with multiple limb-like flagella? The latest discovery, published in the journal Proceedings of the National Academy of Sciences, shows that despite their simplicity, microalgae can coordinate their flagella into leaping, trotting or galloping gaits just as well.

Many gaits are periodic: whether it is the stylish walk of a cat, the graceful gallop of a horse, or the playful leap of a springbok, the key is the order or sequence in which these limbs are activated. When springboks arch their backs and leap, or 'pronk', they do so by lifting all four legs simultaneously high into the air, yet when horses trot it is the diagonally opposite legs that move together in time.

In vertebrates, gaits are controlled by central pattern generators, which can be thought of as networks of neural oscillators that coordinate output. Depending on the interaction between these oscillators, specific rhythms are produced, which, mathematically speaking, exhibit certain spatiotemporal symmetries. In other words, the gait doesn't change when one leg is swapped with another - perhaps at a different point in time, say a quarter-cycle or half-cycle later.

It turns out the same symmetries also characterise the swimming gaits of microalgae, which are far too simple to have neurons. For instance, microalgae with four flagella in various possible configurations can trot, pronk or gallop, depending on the species.

"When I peered through the microscope and saw that the alga was performing two sets of perfectly synchronous breaststrokes, one directly after the other, I was amazed," said the paper's first author Dr Kirsty Wan of the Department of Applied Mathematics and Theoretical Physics (DAMTP) at the University of Cambridge. "I realised immediately that this behaviour could only be due to something inside the cell rather than passive hydrodynamics. Then of course to prove this I had to expand my species collection."

The researchers determined that it is in fact the networks of elastic fibres which connect the flagella deep within the cell that coordinate these diverse gaits. In the simplest case of Chlamydomonas, which swims a breaststroke with two flagella, absence of a particular fibre between the flagella leads to uncoordinated beating. Furthermore, deliberately preventing the beating of one flagellum in an alga with four flagella has zero effect on the sequence of beating in the remainder.

However, this does not mean that hydrodynamics play no role. In recent work from the same group, it was shown that nearby flagella can be synchronised solely by their mutual interaction through the fluid. There is a distinction between unicellular organisms for which good coordination of a few flagella is essential, and multicellular species or tissues that possess a range of cilia and flagella. In the latter case, hydrodynamic interactions are much more important.

"As physicists our instinct is to seek out generalisations and universal principles, but the world of biology often presents us with many fascinating counterexamples," said Professor Ray Goldstein, Schlumberger Professor of Complex Physical Systems at DAMTP, and senior author of the paper. "Until now there have been many competing theories regarding flagellar synchronisation, but I think we are finally making sense of how these different organisms make best use of what they have."

The findings also raise intriguing questions about the evolution of the control of peripheral appendages, which must have arisen in the first instance in these primitive microorganisms.
This research was supported by a Neville Research Fellowship from Magdalene College, and a Senior Investigator Award from the Wellcome Trust.

University of Cambridge

Related Biology Articles:

Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.
The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.
Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.
A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
More Biology News and Biology Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.