Nav: Home

Algae use their 'tails' to gallop and trot like quadrupeds

May 03, 2016

Long before there were fish swimming in the oceans, tiny microorganisms were using long slender appendages called cilia and flagella to navigate their watery habitats. Now, new research reveals that species of single-celled algae coordinate their flagella to achieve a remarkable diversity of swimming gaits.

When it comes to four-legged animals such as cats, horses and deer, or even humans, the concept of a gait is familiar, but what about unicellular green algae with multiple limb-like flagella? The latest discovery, published in the journal Proceedings of the National Academy of Sciences, shows that despite their simplicity, microalgae can coordinate their flagella into leaping, trotting or galloping gaits just as well.

Many gaits are periodic: whether it is the stylish walk of a cat, the graceful gallop of a horse, or the playful leap of a springbok, the key is the order or sequence in which these limbs are activated. When springboks arch their backs and leap, or 'pronk', they do so by lifting all four legs simultaneously high into the air, yet when horses trot it is the diagonally opposite legs that move together in time.

In vertebrates, gaits are controlled by central pattern generators, which can be thought of as networks of neural oscillators that coordinate output. Depending on the interaction between these oscillators, specific rhythms are produced, which, mathematically speaking, exhibit certain spatiotemporal symmetries. In other words, the gait doesn't change when one leg is swapped with another - perhaps at a different point in time, say a quarter-cycle or half-cycle later.

It turns out the same symmetries also characterise the swimming gaits of microalgae, which are far too simple to have neurons. For instance, microalgae with four flagella in various possible configurations can trot, pronk or gallop, depending on the species.

"When I peered through the microscope and saw that the alga was performing two sets of perfectly synchronous breaststrokes, one directly after the other, I was amazed," said the paper's first author Dr Kirsty Wan of the Department of Applied Mathematics and Theoretical Physics (DAMTP) at the University of Cambridge. "I realised immediately that this behaviour could only be due to something inside the cell rather than passive hydrodynamics. Then of course to prove this I had to expand my species collection."

The researchers determined that it is in fact the networks of elastic fibres which connect the flagella deep within the cell that coordinate these diverse gaits. In the simplest case of Chlamydomonas, which swims a breaststroke with two flagella, absence of a particular fibre between the flagella leads to uncoordinated beating. Furthermore, deliberately preventing the beating of one flagellum in an alga with four flagella has zero effect on the sequence of beating in the remainder.

However, this does not mean that hydrodynamics play no role. In recent work from the same group, it was shown that nearby flagella can be synchronised solely by their mutual interaction through the fluid. There is a distinction between unicellular organisms for which good coordination of a few flagella is essential, and multicellular species or tissues that possess a range of cilia and flagella. In the latter case, hydrodynamic interactions are much more important.

"As physicists our instinct is to seek out generalisations and universal principles, but the world of biology often presents us with many fascinating counterexamples," said Professor Ray Goldstein, Schlumberger Professor of Complex Physical Systems at DAMTP, and senior author of the paper. "Until now there have been many competing theories regarding flagellar synchronisation, but I think we are finally making sense of how these different organisms make best use of what they have."

The findings also raise intriguing questions about the evolution of the control of peripheral appendages, which must have arisen in the first instance in these primitive microorganisms.
This research was supported by a Neville Research Fellowship from Magdalene College, and a Senior Investigator Award from the Wellcome Trust.

University of Cambridge

Related Biology Articles:

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
Cell biology: Take the mRNA train
Messenger RNAs bearing the genetic information for the synthesis of proteins are delivered to defined sites in the cell cytoplasm by molecular motors.
Gravitational biology
Akira Kudo at Tokyo Institute of Technology(Tokyo Tech) and colleagues report in Scientific Reports, December 2016, that live-imaging and transcriptome analysis of medaka fish transgenic lines lead to immediate alteration of cells responsible for bone structure formation.
Biology's 'breadboard'
Understanding how the nervous system of the roundworm C. elegans works will give insights into how our vastly more complex brains function and is the subject of a paper in Nature Methods.
The use of Camelid antibodies for structural biology
The use of Camelid antibodies has important implications for future development of reagents for diagnosis and therapeutics in diseases involving a group of enzymes called serine proteases.
Misleading images in cell biology
Virtually all membrane proteins have been reported to be organized as clusters on cell surfaces, when in fact many of them are just single proteins which have been counted multiple times.

Related Biology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...