Nav: Home

UNC-Chapel Hill scientists find likely cause for recent southeast US earthquakes

May 03, 2016

(Chapel Hill, N.C. - May 3, 2016) - The southeastern United States should, by all means, be relatively quiet in terms of seismic activity. It's located in the interior of the North American Plate, far away from plate boundaries where earthquakes usually occur. But the area has seen some notable seismic events - most recently, the 2011 magnitude-5.8 earthquake near Mineral, Virginia that shook the nation's capital.

Now scientists report in a new study a likely explanation for this unusual activity: pieces of the mantle under this region have been periodically breaking off and sinking down into the Earth. This thins and weakens the remaining plate, making it more prone to slipping that causes earthquakes. The study authors conclude this process is ongoing and likely to produce more earthquakes in the future.

"Our idea supports the view that this seismicity will continue due to unbalanced stresses in the plate," said Berk Biryol, a seismologist at the University of North Carolina at Chapel Hill and lead author of the new study. "The [seismic] zones that are active will continue to be active for some time." The study was published today in the Journal of Geophysical Research - Solid Earth, a journal of the American Geophysical Union.

Compared to earthquakes near plate boundaries, earthquakes in the middle of plates are not well understood and the hazards they pose are difficult to quantify. The new findings could help scientists better understand the dangers these earthquakes present.

Old plates and earthquakes

Tectonic plates are composed of Earth's crust and the uppermost portion of the mantle. Below is the asthenosphere: the warm, viscous conveyor belt of rock on which tectonic plates ride.

Earthquakes typically occur at the boundaries of tectonic plates, where one plate dips below another, thrusts another upward, or where plate edges scrape alongside each other. Earthquakes rarely occur in the middle of plates, but they can happen when ancient faults or rifts far below the surface reactivate. These areas are relatively weak compared to the surrounding plate, and can easily slip and cause an earthquake.

Today, the southeastern U.S. is more than 1,056 miles from the nearest edge of the North American Plate, which covers all of North America, Greenland and parts of the Atlantic and Arctic oceans. But the region was built over the past billion years by periods of accretion, when new material is added to a plate, and rifting, when plates split apart. Biryol and colleagues suspected ancient fault lines or pieces of old plates extending deep in the mantle following episodes of accretion and rifting could be responsible for earthquakes in the area.

"This region has not been active for a long time," Biryol said. "We were intrigued by what was going on and how we can link these activities to structures in deeper parts of the Earth."

A CAT scan of the Earth

To find out what was happening deep below the surface, the researchers created 3D images of the mantle portion of the North American Plate. Just as doctors image internal organs by tracing the paths of x-rays through human bodies, seismologists image the interior of the Earth by tracing the paths of seismic waves created by earthquakes as they move through the ground. These waves travel faster through colder, stiffer, denser rocks and slower through warmer, more elastic rocks. Rocks cool and harden as they age, so the faster seismic waves travel, the older the rocks.

The researchers used tremors caused by earthquakes more than 2,200 miles away to create a 3D map of the mantle underlying the U.S. east of the Mississippi River and south of the Ohio River. They found plate thickness in the southeast U.S. to be fairly uneven -- they saw thick areas of dense, older rock stretching downward and thin areas of less dense, younger rock.

"This was an interesting finding because everybody thought that this is a stable region, and we would expect regular plate thickness," Biryol said.

At first, they thought the thick, old rocks could be remnants of ancient tectonic plates. But the shapes and locations of the thick and thin regions suggested a different explanation: through past rifting and accretion, areas of the North American Plate have become more dense and were pulled downward into the mantle through gravity. At certain times, the densest parts broke off from the plate and sank into the warm asthenosphere below. The asthenosphere, being lighter and more buoyant, surged in to fill the void created by the missing pieces of mantle, eventually cooling to become the thin, young rock in the images.

The researchers concluded this process is likely what causes earthquakes in this otherwise stable region: when the pieces of the mantle break off, the plate above them becomes thinner and more prone to slip along ancient fault lines. Typically, the thicker the plate, the stronger it is, and the less likely to produce earthquakes.

According to Biryol, pieces of the mantle have most likely been breaking off from underneath the plate since at least 65 million years ago. Because the researchers found fragments of hard rocks at shallow depths, this process is still ongoing and likely to continue into the future, potentially leading to more earthquakes in the region, he said.
-end-
Editor's note: This press release has been reproduced in its entirety from the American Geophysical Union and can also be found here.

University of North Carolina at Chapel Hill

Related Earthquakes Articles:

Stanford researchers explain earthquakes we can't feel
Researchers have explained mysterious slow-moving earthquakes known as slow slip events with the help of computer simulations.
Solved: How tides can trigger earthquakes
Some earthquakes along mid-ocean ridges are linked with low tides, but nobody could figure out why.
Cataloging Southern California's tiny hidden earthquakes
Nearly 1.8 million tiny tremblors have been added to the catalog of total seismic events in Southern California over the past decade, reports a new study, which details the most comprehensive earthquake catalog to date.
Measuring iceberg production with earthquakes
An international team led by French researchers from the CNRS and Paris Diderot University came up with the idea of using earthquakes generated when icebergs break away -- felt hundreds of kilometres off -- to measure this ice loss.
Injection wells can induce earthquakes miles away from the well
A study of earthquakes induced by injecting fluids deep underground has revealed surprising patterns, suggesting that current recommendations for hydraulic fracturing, wastewater disposal, and geothermal wells may need to be revised.
Earthquakes can be weakened by groundwater
Researchers from EPFL and the Ecole Normale Supérieure in Paris have found that the presence of pressurized fluid in surrounding rock can reduce the intensity of earthquakes triggered by underground human activities like geothermal energy production.
UH researchers report new understanding of deep earthquakes
Researchers from the University of Houston have for the first time reported a way to analyze seismic wave radiation patterns in deep earthquakes to suggest global deep earthquakes are in anisotropic rocks.
International collaboration studies the predictability of earthquakes
At four centers in California, New Zealand, Europe and Japan -- and in countless labs across the globe -- CSEP's experiments and its rigorous testing procedures have shed light on the predictability of earthquakes, according to a special focus section published June 13 in Seismological Research Letters.
Machine listening for earthquakes
In a new study in Science Advances, researchers at Columbia University show that machine learning algorithms could pick out different types of earthquakes from three years of earthquake recordings at The Geysers in California, a major geothermal energy field.
Unearthing the underground effects of earthquakes and volcanoes
Kyushu University (Japan) researchers analyzed high-resolution seismic velocity data from 36 seismograph stations across the island of Kyushu to identify variations before, during, and after the MW 7.0 2016 Kumamoto earthquake.
More Earthquakes News and Earthquakes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.