Utilizing tumor suppressor proteins to shape nanomaterials

May 03, 2017

A new method combining tumor suppressor protein p53 and biomineralization peptide BMPep successfully created hexagonal silver nanoplates, suggesting an efficient strategy for controlling the nanostructure of inorganic materials.

Precise control of nanostructures is a key factor to form functional nanomaterials. Biomimetic approaches are considered effective for fabricating nanomaterials because biomolecules are able to bind with specific targets, self-assemble, and build complex structures. Oligomerization, or the assembly of biomolecules, is a crucial aspect of natural materials that form higher-ordered structures.

Some peptides are known to bind with a specific inorganic substance, such as silver, and enhance its crystal formation. This phenomenon, called peptide-mediated biomineralization, could be used as a biomimetic approach to create functional inorganic structures. Controlling the spatial orientation of the peptides could yield complex inorganic structures, but this has long been a great challenge.

A team of researchers led by Hokkaido University Professor Kazuyasu Sakaguchi has succeeded in controlling the oligomerization of the silver biomineralization peptide (BMPep) which led to the creation of hexagonal silver nanoplates.

The team utilized the well-known tumor suppressor protein p53 which has been known to form tetramers through its tetramerization domain (p53Tet). "The unique symmetry of the p53 tetramer is an attractive scaffold to be used in controlling the overall oligomerization state of the silver BMPep such as its spatial orientation, geometry, and valency," says Sakaguchi.

In the experiments, the team successfully created silver BMPep fused with p53Tet. This resulted in the formation of BMPep tetramers which yielded hexagonal silver nanoplates. They also found that the BMPep tetramers have enhanced specificity to the structured silver surface, apparently regulating the direction of crystal growth to form hexagonal nanoplates. Furthermore, the tetrameric peptide acted as a catalyst, controlling the silver's crystal growth without consuming the peptide.

"Our novel method can be applied to other biomineralization peptides and oligomerization proteins, thus providing an efficient and versatile strategy for controlling nanostructures of various inorganic materials. The production of tailor-made nanomaterials is now more feasible," Sakaguchi commented.
-end-


Hokkaido University

Related Peptides Articles from Brightsurf:

Peptides+antibiotic combination may result in a more effective treatment for leishmaniasis
A combination of peptides and antibiotics could be key to eliminating the parasite causing leishmaniasis and avoiding the toxicity to people and animals caused by current drugs.

Designer peptides show potential for blocking viruses, encourage future study
Chemically engineered peptides, designed and developed by a team of researchers at Rensselaer Polytechnic Institute, could prove valuable in the battle against some of the most persistent human health challenges.

Tracking down cryptic peptides
Using a newly developed method, researchers from the University of Würzburg, in cooperation with the University Hospital of Würzburg, were able to identify thousands of special peptides on the surface of cells for the first time.

Synthesis of prebiotic peptides gives clues to the origin of life on Earth
Coordination Compounds Lab of Kazan Federal University started researching prebiotic peptide synthesis in 2013 with the use of the ASIA-330 flow chemistry system.

Peptides that can be taken as a pill
Peptides represent a billion-dollar market in the pharmaceutical industry, but they can generally only be taken as injections to avoid degradation by stomach enzymes.

Harnessing psyllid peptides to fight citrus greening disease
BTI, USDA and UW scientists have identified peptides in the Asian citrus psyllid, an insect that spreads the bacterium that causes citrus greening disease (huanglongbing, HLB).

New technique has potential to protect oranges from citrus greening
Citrus greening, also called Huanglongbing (HLB), is devastating the citrus industry.

Researchers show what drives a novel, ordered assembly of alternating peptides
A team of researchers has verified that it is possible to engineer two-layered nanofibers consisting of an ordered row of alternating peptides, and has also determined what makes these peptides automatically assemble into this pattern.

Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.

Ragon Institute study identifies viral peptides critical to natural HIV control
Investigators at the Ragon Institute of MGH, MIT and Harvard have used a novel approach to identify specific amino acids in the protein structure of HIV that appear critical to the ability of the virus to function and replicate.

Read More: Peptides News and Peptides Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.