Nav: Home

Phthalates increase the risk of allergies among children

May 03, 2017

Phthalates, which are used as plasticizers in plastics, can considerably increase the risk of allergies among children. This was demonstrated by UFZ researchers in conjunction with scientists from the University of Leipzig and the German Cancer Research Center (DKFZ) in a current study published in the Journal of Allergy and Clinical Immunology. According to this study, an increased risk of children developing allergic asthma exists if the mother has been particularly heavily exposed to phthalates during pregnancy and breastfeeding. The mother-child cohort from the LINA study was the starting and end point of this translational study.

In our day-to-day lives, we come into contact with countless plastics containing plasticizers. These plasticizers, which also include the aforementioned phthalates, are used when processing plastics in order to make the products more flexible. Phthalates can enter our bodies through the skin, foodstuffs or respiration. "It is a well-known fact that phthalates affect our hormone system and can thereby have an adverse effect on our metabolism or fertility. But that's not the end of it," says UFZ environmental immunologist Dr Tobias Polte. "The results of our current study demonstrate that phthalates also interfere with the immune system and can significantly increase the risk of developing allergies."

At the outset of the study, the team of UFZ researchers examined the urine of pregnant women from the LINA (lifestyle and environmental factors and their influence on the newborn-allergy-risk) mother-child cohort study and searched for metabolites of phthalates. The concentration level determined in each case was found to correlate with the occurrence of allergic asthma among the children. "There was a clearly discernible relationship between higher concentrations of the metabolite of benzylbutylphthalate (BBP) in the mother's urine and the presence of allergic asthma in their children", explains Dr Irina Lehmann, who heads the LINA study.

Researchers were able to confirm the results from the mother-child cohort in the mouse model in collaboration with colleagues from the Medical Faculty at the University of Leipzig. In this process, mice were exposed to a certain phthalate concentration during pregnancy and the lactation period, which led to comparable concentrations of the BBP metabolite in urine to those observed in heavily exposed mothers from the LINA cohort. The offspring demonstrated a clear tendency to develop allergic asthma; even the third generation continued to be affected. Among the adult mice, on the other hand, there were no increased allergic symptoms. "The time factor is therefore decisive: if the organism is exposed to phthalates during the early stages of development, this may have effects on the risk of illness for the two subsequent generations," explains Polte. "The prenatal development process is thus clearly altered by the phthalate exposure."

Phthalates turn off regulatory genes

In order to establish precisely what may have been modified, Polte and his team, in collaboration with colleagues from the German Cancer Research Center (DKFZ), took a close look at the genes of the young mice born to exposed mothers. So-called methyl groups were found in the DNA of these genes - and to a greater extent than is usually the case. In the course of this so-called epigenetic modification of the DNA, methyl groups attach themselves to a gene like a kind of padlock and thus prevent its code from being read, meaning that the associated protein cannot be produced. After the researchers treated the mice with a special substance intended to crack the methyl "locks" on the affected genes, the mice demonstrated fewer signs of allergic asthma than before. Dr Polte concludes the following: "Phthalates apparently switch off decisive genes by means of DNA methylation, causing the activity of these genes to be reduced in the young mice."

But which genes cause allergic asthma if they cannot be read? So-called T-helper 2 cells play a central part in the development of allergies. These are kept in check by special opponents (repressors). If a repressor gene cannot be read as a result of being blocked by methyl groups, the T-helper 2 cells that are conducive to the development of allergies are no longer sufficiently inhibited, meaning that an allergy is likely to develop. "We surmise that this connection is decisive for the development of allergic asthma caused by phthalates," says Polte. "Furthermore, in the cell experiment, we were able to demonstrate that there is an increased formation of T-helper 2 cells from the immune cells of the offspring of exposed mother mice than is the case for the offspring of non-exposed animals. This enabled us to establish an increased tendency towards allergies once again."

From humans to mice and back again

In mice, the researchers were able to prove that a repressor gene that has been switched off due to DNA methylation is responsible for the development of allergic asthma. But does this mechanism also play a part in humans? In order to answer this question, the researchers consulted the LINA cohort once more. They searched for the corresponding gene among the children with allergic asthma and studied the degree of methylation and gene activity. Here, too, it became apparent that the gene was blocked by methyl groups and thus could not be read. "Thanks to our translational study approach - which led from humans via the mouse model and cellular culture back to humans again - we have been able to demonstrate that epigenetic modifications are apparently responsible for the fact that children of mothers who had a high exposure to phthalates during pregnancy and breastfeeding have an increased risk of developing allergic asthma," says Polte. "The objective of our further research will be to understand exactly how specific phthalates give rise to the methylation of genes which are relevant for the development of allergies."
-end-
Publication:

Susanne Jahreis, Saskia Trump, Mario Bauer, Tobias Bauer, Loreen Thu?rmann, Ralph Feltens, Qi Wang, Lei Gu, Konrad Gru?tzmann, Stefan Röder, Marco Averbeck, Dieter Weichenhan, Christoph Plass, Ulrich Sack, Michael Borte, Virginie Dubourg, Gerrit, Schu?u?rmann, Jan C. Simon, Martin von Bergen, Jörg Hackermu?ller, Roland Eils, Irina Lehmann, Tobias Polte (2017): Maternal phthalate exposure promotes allergic airway inflammation over two generations via epigenetic modifications, Journal of Allergy and Clinical Immunology; doi: 10.1016/j.jaci.2017.03.017; http://doi.org/10.1016/j.jaci.2017.03.017

Further information:

PD Dr Tobias Polte
Head of the Helmholtz University Research Group "Experimental Allergology and Immunology"
Tel.: +49 341 235-1545
E-mail: tobias.polte@ufz.de
https://www.ufz.de/index.php?en=37960

Dr Irina Lehmann
Head of the UFZ Department of Environmental Immunology
Tel.: +49 341 235-1216
Email: irina.lehmann@ufz.de
http://www.ufz.de/index.php?en=40286

Helmholtz Centre for Environmental Research - UFZ

Related Breastfeeding Articles:

What causes women to stop breastfeeding early?
A recent systematic literature review has investigated potential sociodemographic, physical, mental, and social factors that may cause breastfeeding mothers to stop breastfeeding before infants reach 6 months of age.
Breastfeeding may protect against chronic pain after Caesarean section
Breastfeeding after a Caesarean section (C-section) may help manage pain, with mothers who breastfed their babies for at least two months after the operation three times less likely to experience persistent pain compared to those who breastfed for less than two months, according to new research being presented at this year's Euroanaesthesia Congress in Geneva (June 3-5).
Can breastfeeding reduce a woman's risk of metabolic syndrome?
A new study shows that women who spend a longer time breastfeeding during their lifetimes may be able to lower their risk of metabolic syndrome and related disorders included elevated blood pressure, glucose, and triglyceride levels.
Post-breastfeeding tissue remodeling explained by new research
A groundbreaking study into the changes that occur in a woman's breast, from growing into one that provides milk for a newborn, and then back to its normal state, has discovered that milk-producing cells are, in effect, cannibalized by other cells following the period of breastfeeding.
Breastfeeding associated with better brain development and neurocognitive outcomes
A new study, which followed 180 pre-term infants from birth to age seven, found that babies who were fed more breast milk within the first 28 days of life had had larger volumes of certain regions of the brain at term equivalent and had better IQs, academic achievement, working memory, and motor function.
More Breastfeeding News and Breastfeeding Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.