Nav: Home

Starvation causes atypical cell death

May 03, 2017

Researchers from the Cell death group of the Bellvitge Biomedical Research Institute (IDIBELL), led by Dr. Cristina Muñoz-Pinedo, have characterized the cell death process due to starvation, in which the endoplasmic reticulum plays a leading role. Their work, chosen as the cover of the latest Molecular and Cellular Biology journal, was carried out within TRAIN-ERs, a European collaborative action that studies diseases associated with this cellular organelle.

"Usually, programmed cell death -- also called apoptosis -- follows a biochemical pathway related to the permeabilization of mitochondria; However, we observed that in cases of cell death due to lack of glucose, cells die in an unexpected way, following a process similar to what we would expect from an immune response", explains Dr. Cristina Muñoz-Pinedo, last author of the study.

In cell-death-related treatments such as chemotherapy, the mitochondrial pathway is activated. Instead, when starved, cells activate the so-called "death receptors" on their membrane, which are normally used by the lymphocytes of the immune system to attack and destroy infected cells.

IDIBELL researchers have been able to relate the activation of these membrane receptors to the endoplasmic reticulum, a cellular organelle involved in protein synthesis and lipid metabolism, as well as intracellular transport. "Feeling the stress produced by the lack of nutrients, the reticulum send an alarm signal that triggers the appearance of death receptors in the membrane", says Dr. Muñoz-Pinedo.

"According to our in vitro results, we assume that this is how the tumor cells located in the center of a tumor -- the so-called necrotic core -- die, because there are never enough nutrients in those areas", adds the IDIBELL researcher. "On the other hand, in ischemia, besides the lack of oxygen there is also cell death due to lack of glucose, so this process could also be related to the activity of the endoplasmic reticulum at a biochemical level".
-end-
This work was possible thanks to the funding received from the European Marie Curie TRAIN-ERs network, which supports and trains young researchers to develop strategies for the treatment of diseases associated with endoplasmic reticulum stress. "Within TRAIN-ERs, the goal of our research group was to study the role of endoplasmic reticulum stress signals in starvation, and we have shown that it is essential," says Muñoz-Pinedo.

Endoplasmic reticulum (ER) stress is emerging recently as a common feature in the pathology of numerous diseases including cancer, neurodegenerative disorders, metabolic syndromes and inflammatory diseases, affecting millions of patients annually worldwide and assuming a huge economic burden for the health sector.

IDIBELL-Bellvitge Biomedical Research Institute

Related Glucose Articles:

What drives inflammation in type 2 diabetes? Not glucose, says new research
Research led by Barbara Nikolajczyk, Ph.D., disproved the conventional wisdom that glucose was the primary driver of chronic inflammation in type 2 diabetes.
ALS patients may benefit from more glucose
A new study led by scientists at the UA has uncovered a potential new way to treat patients with ALS, a debilitating neurodegenerative disease.
Artificial muscles powered by glucose
Artificial muscles made from polymers can now be powered by energy from glucose and oxygen, just like biological muscles.
Efficiently producing fatty acids and biofuels from glucose
Researchers have presented a new strategy for efficiently producing fatty acids and biofuels that can transform glucose and oleaginous microorganisms into microbial diesel fuel, with one-step direct fermentative production.
Protein released from fat after exercise improves glucose
Exercise training causes dramatic changes to fat. Additionally, this 'trained' fat releases beneficial factors into the bloodstream.
WSU researchers create 3D-printed glucose biosensors
A 3D-printed glucose biosensor for use in wearable monitors has been created by Washington State University researchers.
Gut protein mutations shield against spikes in glucose
Why is it that, despite consuming the same number of calories, sodium and sugar, some people face little risk of diabetes or obesity while others are at higher risk?
Glucose binding molecule could transform the treatment of diabetes
Scientists from the University of Bristol have designed a new synthetic glucose binding molecule platform that brings us one step closer to the development of the world's first glucose-responsive insulin which, say researchers, will transform the treatment of diabetes.
Nutrients may reduce blood glucose levels
One amino acid, alanine, may produce a short-term lowering of glucose levels by altering energy metabolism in the cell.
Cancer hijacks the microbiome to glut itself on glucose
A University of Colorado Cancer Center study published today in the journal Cancer Cell shows that leukemia actively undercuts the ability of normal cells to consume glucose, thus leaving more glucose available to feed its own growth.
More Glucose News and Glucose Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.