Nav: Home

In severe pediatric heart defect, more brain abnormalities appear as staged surgeries progress

May 03, 2017

As children with single-ventricle disease, a complex and severe heart defect, undergo a series of three reconstructive surgeries, pediatric researchers have detected higher rates of brain abnormalities at each stage. The scientists also found associated changes in the infants' cerebral blood flow that could offer important clues to improving long-term neurological outcomes in these children.

"We have long known that children with single-ventricle disease have a strong risk of poor neurologic outcomes after surviving staged surgical reconstruction," said pediatric cardiologist Mark A. Fogel, MD, primary investigator of the study team from Children's Hospital of Philadelphia (CHOP) and Director of Cardiac Magnetic Resonance. "This was the first study to measure the incidence of brain abnormalities throughout the three stages of surgery, and to investigate a correlation between cerebral blood flow and brain lesions."

The research, published in Circulation, was a single-center, National Institutes of Health sponsored study of 168 single-ventricle patients who underwent staged surgical reconstruction at CHOP between 2009 and 2014.

In single-ventricle disease, a child is born with a severely underdeveloped ventricle, one of the heart's two pumping chambers. Heart surgeons perform a series of three reconstructive surgeries culminating in the Fontan operation. In addition to a high risk of mortality, patients may experience poor neurologic outcomes due to both brain injury and delayed maturation. The causes of the brain abnormalities are complex, including genetics, cyanosis (impaired levels of blood oxygen) and complications of surgery, including altered physiology and circulation.

Along with determining the prevalence of brain abnormalities over time, the research team also searched for links between brain abnormalities and three circulatory factors: cerebral blood flow (CBF), oxygen delivery and carbon dioxide reactivity.

The study team performed magnetic resonance imaging (MRI) scans before and after different stages of the surgeries. Evidence of brain abnormalities appeared as tissue loss, changes in white matter and ventriculomegaly--enlargements in the brain's fluid-filled cavities. All of these were more common later in the series of surgeries, and after the Fontan operation, the last surgery.

In addition, infants with higher CBF measurements tended to have fewer brain abnormalities. For the most part, the researchers found no association between these brain abnormalities and carbon dioxide reactivity or oxygen delivery.

"This study cannot identify a cause-and-effect relationship between cerebral blood flow and brain lesions," said Fogel. "A longer-range, more complicated study would be necessary to determine that."

However, added Fogel, "Our research suggests the possibility that early measurements of CBF and detection of brain abnormalities may help us to better identify which single-ventricle patients are at higher risk for poor outcomes. Although more investigation needs to be done, we may find that techniques to increase cerebral blood flow and prevent neurological injury may offer early clinical interventions to improve long-term outcomes in children with congenital heart disease."
-end-
The National Institutes of Health (HL090615, NS072338, NS060653, DH087180) and the June and Steve Wolfson Family Foundation supported this research.

Mark A. Fogel et al, "Neurologic Injury and Cerebral Blood Flow in Single Ventricles Throughout Staged Surgical Reconstruction, Circulation, Feb. 14, 2017.

About Children's Hospital of Philadelphia: Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals, and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country. In addition, its unique family-centered care and public service programs have brought the 546-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu

Children's Hospital of Philadelphia

Related Brain Articles:

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.
Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.