Nav: Home

Study measures air pollution increase attributable to air conditioning

May 03, 2017

MADISON, Wis. -- When summer temperatures rise and people turn to their air conditioners to stay cool, something else also increases: air pollution.

A new study published Wednesday (May 3, 2017) in the journal Environmental Science & Technology shows that the electricity production associated with air conditioning causes emissions of sulfur dioxide, nitrogen oxides and carbon dioxide to increase by hundreds to thousands of metric tons, or 3 to 4 percent per degree Celsius (or 1.8 degrees Fahrenheit).

"The hottest days of the summer typically coincide with the days of highest air pollution," says study lead author David Abel, a graduate student in the Nelson Institute for Environmental Studies at the University of Wisconsin-Madison. "We quantified the relationship between daily temperature and power plant emissions of nitrogen oxides, sulfur dioxide and carbon dioxide on a state-by-state basis in a comprehensive manner that hasn't been done before."

Increased emissions of these gases can affect not only the environment but also people's health. Sulfur dioxide and nitrogen oxides -- both of which are regulated in the U.S. -- can cause respiratory problems, particularly in children, people with asthma and the elderly. Carbon dioxide is a primary greenhouse gas targeted by power plant regulations.

"We show that increased electricity demand may play a key role in high levels of ozone, particulate matter and other pollutants, so efforts to reduce peak demand could be beneficial to public health," Abel explains.

Scientists have long known that air pollution is highest on hot days but few studies have looked at the specific effects of electricity emissions on the hottest days and what they contribute to air pollution. The report's state-specific findings provide valuable data for policymakers and other local stakeholders, who can see how emissions in their region respond to temperature.

"Most of the research on climate and air pollution has focused on other emission sources, chemical reactions in the air, and how weather patterns can trap pollution," says Tracey Holloway, who led the study. Holloway is a professor of environmental studies at the Nelson Institute and in the UW-Madison Department of Atmospheric and Oceanic Sciences. She says the study carries the discussion a step further: "We showed that hot summer days also have higher emissions from power plants."

The study team included scientists at Seventhwave, a Madison-based nonprofit, and Paul Meier, an engineer at Blumont/International Relief and Development who was with the Wisconsin Energy Institute at UW-Madison when he completed the work. Using data collected between 2003 and 2014, the team crunched the numbers on electricity emissions in 26 states in the eastern U.S., along with Texas.

They showed that power plants released 3.35 percent more sulfur dioxide on average per degree Celsius increase in temperature, and that nitrogen oxides and carbon dioxide rose by 3.60 percent and 3.32 percent, respectively. Although overall emissions dropped in the study period -- primarily due to increased use of emissions-control devices and a decrease in coal use -- the analysis showed large regional variability.

The researchers were surprised to find that states with lower overall emissions in the Northeast show the highest sensitivity to temperature. This, they say, highlights the importance of peak electricity generation on hot days and the role of older or less regulated facilities that may only be turned on when people blast their air conditioners. These are often the days when pollution control is most important to protect public health. Abel says a large portion of the U.S. population continues to regularly encounter air pollution.

The researchers plan to continue studying the impacts and interactions of increases in emissions on hot summer days with other processes that affect concentrations of ozone, particulates, and other forms of air pollution.

"Our next step is to compare the impact of electricity emissions with other factors affecting pollution formation - especially chemistry, natural emissions, and wind patterns," notes Holloway. "We'd like to be able to say how these processes interact. For example, relative to other factors controlling pollution formation, how important is the response of emissions from power plants?"
-end-
The study was funded by UW-Madison, the National Institutes of Health and NASA.

Adapted from a release by Christine Suh at the American Chemical Society.

Jenny Peek
peek@wisc.edu
608-263-9289

University of Wisconsin-Madison

Related Air Pollution Articles:

Exploring the neurological impact of air pollution
Air pollution has become a fact of modern life, with a majority of the global population facing chronic exposure.
Spotting air pollution with satellites, better than ever before
Researchers from Duke University have devised a method for estimating the air quality over a small patch of land using nothing but satellite imagery and weather conditions.
Exposure to air pollution during pregnancy is associated with growth delays
A new study by the Barcelona Institute for Global Health (ISGlobal) has found an association between exposure to air pollution during pregnancy and delays in physical growth in the early years after birth.
Nearly half of US breathing unhealthy air; record-breaking air pollution in nine cities
Amid the COVID-19 pandemic, the impact of air pollution on lung health is of heightened concern.
Air pollution linked to dementia and cardiovascular disease
People continuously exposed to air pollution are at increased risk of dementia, especially if they also suffer from cardiovascular diseases, according to a study at Karolinska Institutet in Sweden published in the journal JAMA Neurology.
New framework will help decide which trees are best in the fight against air pollution
A study from the University of Surrey has provided a comprehensive guide on which tree species are best for combating air pollution that originates from our roads -- along with suggestions for how to plant these green barriers to get the best results.
Air pollution is one of the world's most dangerous health risks
Researchers calculate that the effects of air pollution shorten the lives of people around the world by an average of almost three years.
The world faces an air pollution 'pandemic'
Air pollution is responsible for shortening people's lives worldwide on a scale far greater than wars and other forms of violence, parasitic and insect-born diseases such as malaria, HIV/AIDS and smoking, according to a study published in Cardiovascular Research.
Air pollution in childhood linked to schizophrenia
Children who grow up in areas with heavy air pollution have a higher risk of developing schizophrenia.
Air pollution can worsen bone health
A new study by the CHAI Project with over 3,700 people in India associates air pollution with a higher risk to develop osteoporosis.
More Air Pollution News and Air Pollution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.