Nav: Home

Spotted skunk evolution driven by climate change

May 03, 2017

Climate plays a key role in determining what animals can live where. And while human-induced climate change has been causing major problems for wildlife as of late, changes in the Earth's climate have impacted evolution for millions of years--offering tantalizing clues into how to protect animals facing climate change today. In a new paper in Ecology and Evolution, scientists have delved into the effects of Ice Age climate change upon the evolution of tiny, hand-standing skunks.

"By analyzing western spotted skunk DNA, we learned that Ice Age climate change played a crucial role in their evolution," says lead author Adam Ferguson, Collections Manager of Mammals at The Field Museum in Chicago and affiliate of Texas Tech University. "Over the past million years, changing climates isolated groups of spotted skunks in regions with suitable abiotic conditions, giving rise to genetic sub-divisions that we still see today."

Western spotted skunks are really stinkin' cute-- at two pounds, they're smaller than the striped Pepe Le Pew variety, their coats are an almost maze-like pattern of black and white swirls, and when they spray, they often do a hand-stand, hind legs and fluffy tail in the air as they unleash smelly chemicals to ward off predators. They're found throughout the Western US and Mexico, in a wide variety of climates-- they thrive everywhere from Oregon's temperate rainforests to the Sonoran, the hottest desert in Mexico.

There are three genetic sub-groups, called clades, of western spotted skunks. Often, clades develop when a species is split up by geography. If a species is separated by, say, a mountain range, the groups on either side of the mountain may wind up splitting off from each other genetically. However, the division of the skunks into three clades doesn't seem to have been driven solely by geographical barriers-- populations separated by mountains are more or less genetically identical. Instead, the skunks vary genetically from one historic climate region to another, due to Ice Age climate change.

"Western spotted skunks have been around for a million years, since the Pleistocene Ice Age," explains Ferguson. "During the Ice Age, western North America was mostly covered by glaciers, and there were patches of suitable climates for the skunks separated by patches of unsuitable climates. These regions are called climate refugia. When we analyzed the DNA of spotted skunks living today, we found three groups that correspond to three different climate refugia."

"That means that for spotted skunk evolution, climate change appears to have been a more important factor than geographical barriers," says Ferguson.

In the study, scientists used DNA samples from 97 skunks from a variety of regions and climates in the American Southwest. Upon sequencing the DNA, the scientists were surprised to see that the skunks split into three clades based on pockets of suitable climate present during the Pleistocene.

"Small carnivores like skunks haven't been well-studied when it comes to historical climate change," says Ferguson. "We know how small mammals like rodents respond to changing climates, and we know how bigger carnivores like wolves respond, but this study helps bridge the gap between them."

Ferguson also notes that skunks don't deserve the bad rap they get. "Skunks are a really interesting family of North American carnivores-- they're well-known, but not well-studied. And studying them comes with a cost-- they stink, even their tissues stink, and you run the risk of getting sprayed. But they're important to their ecosystems-- for example, they eat insects and rodents that damage our crops," he says.

Moreover, Ferguson says, the study can illuminate the bigger picture of biodiversity in the face of climate change-- an issue that grows increasingly relevant as human-driven climate change affects more and more of the world's animals.

"What we know about the past can inform what we expect to see in the future," says Ferguson. "Understanding these genetic subdivisions that happened as a result of changing climatic conditions can help us conserve skunks and other animals in the future."

Before working at The Field Museum, Adam Ferguson was affiliated with Texas Tech University and completed this research there. Ferguson's co-authors are affiliated with Angelo State University, the National Museum of Natural History, the National Zoological Park, the US Fish and Wildlife Service, and the University of New Mexico.
-end-


Field Museum

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.