Nav: Home

'Princess pheromone' tells ants which larvae are destined to be queens

May 03, 2017

For Indian jumping ants (Harpegnathos saltator), becoming royalty is all about timing.

If a larva gives signs of maturing into a queen at the wrong time, it is physically harassed into remaining a humble worker. But the same cues at the right time give the larva access to the resources it needs to thrive and develop as a queen. Now scientists have identified the "princess pheromone" that tells a colony when an ant larva is aiming for coronation.

"People have been studying pheromones in ants for more than 50 years, and pretty much everything we've learned regards how adult ants use pheromones to communicate with each other," says Clint Penick, a postdoctoral researcher at North Carolina State University and lead author of this study. "This is one of the only instances - maybe even the first time - that we've found ant larvae producing pheromones that influence colony behavior."

Every year, around the time of the first summer rains, colonies of H. saltator rear the newest crop of queens, which leave their colonies after reaching maturity and embark on a mating flight. The queens breed with winged males and then establish new colonies of their own.

However, if an ant larva indicates that it is developing into a queen at the wrong time of year - such as midwinter - that's a problem. The timing is all wrong for a mating flight, and the larva would be using colony resources for no reason. So when worker ants detect a nascent queen at the wrong time, they chew on it. Literally. The stress induced by biting the larva induces the larva to develop as a worker. Video of workers attacking these larvae can be seen at

"Workers may also prevent queen development if more queens are developing than the colony can support," Penick says. "By the same token, the princess pheromone, when released at the right time, ensures that workers facilitate the development of the next generation of queens."

The researchers could tell that some sort of non-visual cue was passing information from H. saltator larvae to workers based on observations of how worker ants interacted with seemingly identical larvae.

To investigate, the researchers examined the wax layer found on the cuticle of larvae. Specifically, they took samples from the wax layer on large larvae that were clearly about to become queens and from smaller larvae that were likely to be workers. They found that the chemical compositions of the different wax layers were clearly distinct.

The researchers then experimented by transferring the wax layer from queen larvae to the cuticle of worker larvae. The presence of traces from the queen larvae was enough to get workers to respond to the small worker larvae as if they were developing into queens.

In addition, by treating worker larvae with a hormone known to trigger queen development, the researchers were able to make the larvae produce the princess pheromone. This also happened when the hormone was given to male larvae; the males would produce the princess pheromone even though they were incapable of developing into queens. The presence of the pheromone alone was enough to trigger aggressive behavior from workers, even towards male larvae.

"Signals like the princess pheromone are essential to social insects," Penick says. "Ants have to have a way to ensure that there are enough workers in the colony, otherwise all larvae could develop as queens and the insect 'society' would break down. Instead of ants, you would have something more like a colony of wasps.

"This work sheds light on how castes are differentiated in this species and gives us more insight into the complex evolutionary biology behind social insect behaviors," Penick says. "Given that H. saltator is from one of the older lineages of ants, this mechanism is likely to be fairly common in social insects - but more work needs to be done to determine whether princess pheromones are present in other species."
The paper, "A larval 'princess pheromone' identifies future ant queens based on their juvenile hormone content," is published in the journal Animal Behaviour. The paper was co-authored by Jürgen Liebig of Arizona State University.

North Carolina State University

Related Ants Articles:

Bees? Please. These plants are putting ants to work
This is the first plant species in the world found to have adapted traits that enables a mutually beneficial relationship with ants.
Ants use collective 'brainpower' to navigate obstacles
Ants use their numbers to overcome navigational challenges that are too large and disorienting to be tackled by any single individual, reports a new study in the open-access journal eLife.
Ants restore Mediterranean dry grasslands
A team of ecologists and agronomists led by Thierry Dutoit, a CNRS researcher, studied the impact of the Messor barbarus harvester ant on Mediterranean dry grasslands.
Risk aversion as a survival strategy in ants
Ants are excellent navigators and always find their way back to the nest.
Epigenetic switch found that turns warrior ants into forager ants
In 2016, researchers observed that they could reprogram the behavior of the Florida carpenter ant Camponotus floridanus.
Larger than life: Augmented ants
The first app of its kind allows users to interact with biodiversity research through augmented reality.
Ants: Jam-free traffic champions
Whether they occur on holiday routes or the daily commute, traffic jams affect cars as well as pedestrians.
Ants fight plant diseases
New research from Aarhus University shows that ants inhibit at least 14 different plant diseases.
Australian ants prepared for 'Insect Armageddon'
La Trobe University researchers have uncovered an exception to the global phenomenon known as 'Insect Armageddon' in the largest study of Australian insect populations conducted to date.
Robot-ants that can jump, communicate with each other and work together
A team of EPFL researchers has developed tiny 10-gram robots that are inspired by ants: they can communicate with each other, assign roles among themselves and complete complex tasks together.
More Ants News and Ants Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.