Nav: Home

Engineering research focuses on bringing efficiency to network processes

May 03, 2017

It is human nature to seek to spend the least amount of energy, time and cost on any given task to achieve a desirable result, whether that is working out at the gym, finding the best path to travel to work or buying cereal at the grocery.

Now University of New Mexico researchers have discovered through complex numerical modeling a method that could lead to ways to more efficiently perform a variety of tasks and processes, from drug delivery to advertising.

Francesco Sorrentino, UNM assistant professor of mechanical engineering, is the author of an article that recently published in Nature Communications called "Energy Scaling of Targeted Optimal Control of Complex Networks." Co-authors on the paper are Isaac S. Klickstein and Afroza Shirin, both graduate students in the Department of Mechanical Engineering.

The research group examined the problem of reducing the energy consumption when trying to control a large distributed system, such as the power grid, the food web or the Internet.

"It's a very general type of problem," Klickstein said. "We're looking at how to reduce the energy or effort required to reach a certain goal. For instance, how much money do you need to put into a certain advertising campaign? Or if you're an environmentalist, how much government regulation do you need to implement in order to increase animal populations. Our focus is to reduce the amount of effort or energy required."

Klickstein said one of the most useful findings from the research, which spanned about two years, was that the effort can be reduced dramatically by simply focusing the goal of the control action toward only the elements that you care about most rather than the more traditional outlook of monitoring all elements.

"By keeping track of everything, the energy you must expend increases exponentially," he said. "Instead, we say focus your action on only a few parts, say the population of one animal species or the power generation for one neighborhood. And what we've found with our research is that what you do for that small part will affect everybody else without having to focus on the whole population, so the level of impact can be determined and then used to make the decision whether that is an acceptable change."

The concept is similar to using a sample size in a survey: If the goal is to survey those making $50,000 a year, the most efficient way is not to survey everyone, then go through all the data and just pick up the subset you're interested in, but to focus your efforts initially on the group you're interested in, Klickstein said.

He said the issue of applying a control action to influence a system has been a popular research topic, with most of the effort being put toward spreading a control action over more of the network (such as every single house that feeds into a power grid), but costs can be prohibitive with that kind of focus.

"We chose to keep the amount of locations of our control actions small and instead reduce the number of elements in the network we care about," Klickstein said. "And lo and behold, we ended up seeing that we get essentially the same type of behavior by removing control action goals as previous papers got by increasing the number of control action locations.

This is significant because it proves that you can approach a problem in two different ways and get similar results, but ours is a cheaper solution," said Klickstein. "You get all the benefits of having a few control locations (such as reduced cost and effort) but you get the benefit of accomplishing whatever task you want to."

Sorrentino said that another significant finding of the research is that it now becomes possible to control systems that may not have been possible with past methods.

"If you request an action that is too large, you might not be able to do it at all, such as injecting too much energy into the power grid. Plus it is often cost-prohibitive," he said. "By restricting the number of elements we care about and finding that the energy is reduced exponentially, we can make controlling this system visible whereas it would be invisible otherwise."

Shirin said the next step in the research is to apply the theories to real-world systems, such as looking at biological systems as applied to the food web.

"There are a lot of species of some animals, but some of these species are going to waste while others are going extinct, so our goal could be to save a particular species," she said. "This research will allow us to control just the portion we want to study, not the whole population."

Klickstein said that with the continued advances in technology, making systems more and more interconnected, their research findings will become more relevant.

"The work we have done is very theoretical, but I do see there can be applications," he said. "From self-driven cars to cloud storage to the smart grid, everything is becoming more distributed. These are systems that will need to perform complex operations, and it can't take a lot of time. It can't require a lot of effort. This type of directed control action I believe will help drive more efficient algorithms in the future."

The group has recently started working with a group in biology that is working on drug development. Klickstein said that the hope is that their findings could give those who develop drugs information about what is needed for drugs that can be more efficient and targeted.

"We're hoping we'll be able to say, 'Here are a few theoretical drugs. If you can develop these, we can promise you these are the best drugs,' " he said.

Although this research is all in the programming realm, another research group at UNM will be building a small play network using Arduino microcontrollers that will be able to test some of the theory.

"This will allow us to study problems we couldn't study in real life, like the power grid or the food needed for a species to survive," he said.

They are also hoping to connect with other research groups at other universities so their work can be applied to a variety of systems.

"It will take a lot of tuning of our work to apply to any specific system, but the possibilities are definitely out there," Klickstein said.
-end-


University of New Mexico

Related Drug Delivery Articles:

Millimetre-precision drug delivery to the brain
Focused ultrasound waves help ETH researchers to deliver drugs to the brain with pinpoint accuracy, in other words only to where their effect is desired.
New smart drug delivery system may help treatment for neurological disorders
A Rutgers-led team has created a smart drug delivery system that reduces inflammation in damaged nervous tissues and may help treat spinal cord injuries and other neurological disorders.
Novel drug delivery particles use neurotransmitters as a 'passport' into the brain
Drug-carrying lipid nanoparticles were created that incorporate neurotranmitters to help them cross the blood-brain barrier in mice.
Advances in nanoparticles as anticancer drug delivery vector: Need of this century
This review article provides a summary of current advances in the use of nanoparticles (NPs) as anticancer drug-delivery vectors.
Microcapsules for targeted drug delivery to cancer cells
A team of scientists from Peter the Great St. Petersburg Polytechnic University together with their colleagues developed a method of targeted drug delivery to cancer cells.
Improving drug delivery for brain tumor treatment
Despite improvements in drug delivery mechanisms, treating brain tumors has remained challenging.
Nanoparticle orientation offers a way to enhance drug delivery
MIT engineers have shown that they can enhance the performance of drug-delivery nanoparticles by controlling an inherent trait of chemical structures, known as chirality -- the 'handedness' of the structure.
News about drug delivery
Nanocontainer for drugs can have their pitfalls: If they are too heavily loaded, they will only dissolve poorly.
Deflating beach balls and drug delivery
Gwennou Coupier and his colleagues at Grenoble Alps University, Grenoble, France have shown that macroscopic-level models of the properties of microscopic hollow spheres agree very well with theoretical predictions.
New way to wrap liquid drops could improve drug delivery
Researchers have developed a faster, cheaper way to coat liquid medication, an invention that could improve how drugs are delivered in the body.
More Drug Delivery News and Drug Delivery Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.