Nav: Home

Researchers advance low-cost, low-tech Zika virus surveillance tool

May 03, 2017

To combat potential Zika virus outbreaks, some countries have considered using pesticides so strong that they are banned elsewhere. But what if you could quickly determine that mosquitoes were not carrying the Zika virus? The use of harmful pesticides could be avoided, as well as the cost of widespread spraying for mosquitoes.

That's the premise behind a new study published May 3 in Science Translational Medicine and authored by Assistant Professor Joel Rovnak, graduate student Nunya Chotiwan and Research Associate Connie Brewster in Colorado State University's Department of Microbiology, Immunology and Pathology.

The CSU team is using an existing technology in a new way: they have demonstrated a method of biosurveillance that quickly indicates whether Zika virus is present in local mosquito populations - thus informing decision-making about spraying and other disease-prevention methods.

Using the existing technology, loop-mediated isothermal amplification, or LAMP, the research team found that they could easily detect Zika virus in human and mosquito samples from the United States, Brazil and Nicaragua.

LAMP lights the way to virus detection

CSU Research Associate Connie Brewster had been using LAMP, which was developed in Japan in 2001, to detect pneumonia in bighorn sheep through a project with Colorado Parks and Wildlife and the Quackenbush Lab at CSU. LAMP is similar to the technology known as polymerase chain reaction or PCR, which provides a very sensitive analysis of DNA samples. But LAMP can be used in the field, instead of in the lab, and it's also less expensive.

"With LAMP, you don't need the sophistication of a machine," Rovnak said.

To use the PCR method to analyze viruses, researchers first need to extract the RNA or ribonucleic acid from the sample. But with LAMP, the process is much simpler than using PCR.

Using LAMP, researchers start by squishing a mosquito in water. Rovnak said he then takes two microliters of water (about the size of the head of a pin), puts it in a tube and heats it up using a few chemicals or reagents. The sample then becomes cloudy and the color of the solution changes. In the CSU-led study, researchers saw a change or signal within about 30 minutes, though it can take up to one hour.

"Using LAMP to detect Zika virus would be much less expensive for developing countries," said Chotiwan, a researcher in the Perera Lab, which is part of the Arthropod-borne Infectious Diseases Laboratory at CSU.

"The majority of the countries involved in the current outbreak are not rich," she said. "It's important for us to try to develop low-cost surveillance methods that might one day be used in these countries."

As a rough cost estimate, Rovnak said a heating device or heat block, as it is called, for LAMP costs $250 or less. Real-time PCR machines cost between $15,000 and $25,000.

In the study, the research team focused on detecting Zika virus strains from Asia and Africa. Zika virus was first detected in Uganda in 1947 and is predicted to be heading back to the African continent, Chotiwan said.

The Centers for Disease Control and Prevention recently reported local transmission of Zika virus in Cape Verde, off the coast of West Africa. CDC has also issued Zika virus travel advisories for some countries in Africa. In the United States, Zika virus transmission has been reported in Florida and Texas.

No one really knows the extent of the original Zika virus in Africa, according to Rovnak. But being able to distinguish between the different strains is important due to the association of the Asian-linked virus with microcephaly, a congenital condition associated with incomplete brain development among newborns.

Brian Foy, CSU associate professor in the Arthropod-borne Infectious Diseases Laboratory, discovered that Zika virus may be sexually transmitted in addition to being spread by mosquitoes. With two known transmission routes, the virus is an even more formidable foe to public health.

To expand on the early results and use of LAMP to detect Zika virus, the scientists received samples from researchers in Brazil and from a pediatric hospital in Managua, Nicaragua. They also obtained samples from the CDC's Division of Vector-Borne Diseases in Fort Collins.

Next steps include hospital-based tests

Moving forward, clinicians at the pediatric hospital in Managua will test LAMP side-by-side with current, more sophisticated tests. The CSU research team will also test LAMP versus PCR using mosquito and wildlife virus samples from Puerto Rico obtained through a project with the U.S. Department of Agriculture's Animal and Plant Health Inspection Service. 

How soon could LAMP be made available for more widespread use?

"For now, it's what would be considered a long slog," said Rovnak.

"The human diagnostic side of things presents a much more significant challenge," he explained. "It's going to take a lot of time and a lot of data before people will allow regulatory agencies to OK LAMP as a bonafide test for a person that's sick in the hospital."
-end-
Study co-authors include researchers from CSU's Arthropod-borne Infectious Disease Laboratories, the Division of Vector-Borne Diseases at CDC, the Ministry of Health in Nicaragua, Heidelberg University and the German Centre for Infection Research, Fundacao Oswaldo Cruz in Brazil, University of Pittsburgh and University of California, Berkeley.

Colorado State University

Related Zika Virus Articles:

Unravelling mother to baby transmission of Zika virus
Researchers have discovered that when a pregnant mother is infected by Zika virus, it can remain in the placenta for months, causing damage that can be dangerous to the fetus.
Consequences of Zika virus attack on glial cells
Few studies have identified the effects of zika virus infection on astrocytes, as well as their association with developmental alterations, including brain malformations and microcephaly.
Breakthrough in Zika virus vaccine
Researchers from the University of Adelaide have made significant advances in developing a novel vaccine against Zika virus, which could potentially lead to global elimination of the disease.
How the Zika virus can spread
The spread of infectious diseases such as Zika depends on many different factors.
Prior Zika virus or dengue virus infection does not affect secondary infections in monkeys
Previous infection with either Zika virus or dengue virus has no apparent effect on the clinical course of subsequent infection with the other virus, according to a study published August 1 in the open-access journal PLOS Pathogens by David O'Connor of the University of Wisconsin-Madison, and colleagues.
Early dengue virus infection could "defuse" zika virus
The Zika virus outbreak in Latin America has affected over 60 million people up to now.
Long-term consequences of Zika virus infection
Mice exposed to the Zika virus during later stages of gestation present behaviors reminiscent of attention-deficit/hyperactivity disorder, according to a study of genetically diverse animals.
Protection from Zika virus may lie in a protein derived from mosquitoes
By targeting a protein found in the saliva of mosquitoes that transmit Zika virus, Yale investigators reduced Zika infection in mice.
Dengue virus infection may cause severe outcomes following Zika virus infection during pregnancy
This study is the first to report a possible mechanism for the enhancement of Zika virus progression during pregnancy in an animal model.
Dengue virus immunity may protect children from Zika symptoms
Previous infection with dengue virus may protect children from symptomatic Zika, according to a study published Jan.
More Zika Virus News and Zika Virus Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.