Nav: Home

Does my algorithm work? There's no shortcut for community detection

May 03, 2017

Community detection is an important tool for scientists studying networks. It provides descriptions of the large-scale network by dividing its nodes into related communities. To test community detection algorithms, researchers run the algorithm on known data from a real-world network and check to see if their results match up with existing node labels -- metadata -- from that network.

But a new paper published this week in Science Advances calls that approach into question.

Real-world networks are large and complex. Food webs, social networks, or genetic relationships may consist of hundreds, or even millions, of nodes. To understand the overarching layout of a large network, scientists design algorithms to divide the network's nodes into significant groups, which make the network easier to understand. In other words, community detection allows a researcher to zoom out, seeing big patterns in the forest, instead of being caught up in the trees. In the past, researchers have used metadata as a sort of answer key or "ground truth" to verify that their community detection algorithms are performing well.

"Unfortunately, tempting as this practice is, with real-world data, there is no answer key, no ground truth," explains Daniel Larremore, one of two lead authors of the paper and an Omidyar Fellow at the Santa Fe Institute. "Our research rigorously shows that using metadata as ground truth to validate algorithms is fundamentally problematic and introduces biases without telling us what we really need to know: does my algorithm work?"

When scientists use metadata to validate algorithms, they limit the types of communities they can validate. Larremore likens this to a teacher leading a class discussion, and only responding to students who raise points the teacher is already familiar with.

"If we want creative algorithms that can handle all kinds of challenges, then restricting the answers to one set of "ground truth" metadata means we're pushing our algorithms through this bottleneck of low diversity, and low creativity," he says. "We'll only ever get algorithms that solve a small and restricted set of problems."

Having exposed the shortcomings of metadata as a test for community detection, Larremore and co-authors Leto Peel (Université Catholique de Louvain) and Aaron Clauset (SFI, CU Boulder) go on to quash any hope of creating a universal algorithm for detecting communities by their network structures. The paper mathematically proves the first No Free Lunch Theorem for community detection: any algorithm that's exceptionally good at finding communities in one type of network must be exceptionally bad at finding communities in another.

David Wolpert, also of the Santa Fe Institute, first posited a No Free Lunch Theorem for machine learning algorithms in 1997.

The authors hope that by mathematically proving the futility of universal detection algorithms, they can, according to Larremore "free people up to work on specialist algorithms."

The new paper curbs enthusiasm for finding any single, universally optimal approach to understanding complex network datasets. Still, the authors do see a constructive side to their findings. In the final section of their paper, they reverse the usual script. Instead of using metadata to validate an algorithm's performance, as in the past, they introduce two new statistical approaches that use metadata in conjunction with the network itself to probe the more fundamental questions of network science: what are the deeper patterns between the nodes, links, and metadata alike, and how can we use these to learn about the system that the network represents?
-end-


Santa Fe Institute

Related Algorithm Articles:

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.
New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.
New algorithm to help process biological images
Skoltech researchers have presented a new biological image processing method that accurately picks out specific biological objects in complex images.
Skoltech scientists break Google's quantum algorithm
In the near term, Google has devised new quantum enhanced algorithms that operate in the presence of realistic noise.
The most human algorithm
A team from the research group SEES:lab of the Department of Chemical Engineering of the Universitat Rovira I Virgili and ICREA has made a breakthrough with the development of a new algorithm that makes more accurate predictions and generates mathematical models that also make it possible to understand these predictions.
Algorithm turns cancer gene discovery on its head
Prediction method could help personalize cancer treatments and reveal new drug targets.
New algorithm predicts gestational diabetes
Timely prediction may help prevent the condition using nutritional and lifestyle changes.
New algorithm could mean more efficient, accurate equipment for Army
Researchers working on an Army-funded project have developed an algorithm to simulate how electromagnetic waves interact with materials in devices to create equipment more efficiently and accurately.
Universal algorithm set to boost microscopes
EPFL scientists have developed an algorithm that can determine whether a super-resolution microscope is operating at maximum resolution based on a single image.
Algorithm designed to map universe, solve mysteries
Cornell University researchers have developed an algorithm designed to visualize models of the universe in order to solve some of physics' greatest mysteries.
More Algorithm News and Algorithm Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.